OPAL (Object Oriented Parallel Accelerator Library) 2022.1
OPAL
FM1DProfile2.cpp
Go to the documentation of this file.
2#include "Fields/Fieldmap.hpp"
3#include "Physics/Physics.h"
4#include "Physics/Units.h"
5
6#include <fstream>
7#include <ios>
8#include <cmath>
9
10FM1DProfile2::FM1DProfile2(std::string aFilename)
11 : Fieldmap(aFilename),
12 EngeCoefs_entry_m(nullptr),
13 EngeCoefs_exit_m(nullptr),
14 exit_slope_m(0.0),
15 xExit_m(0.0),
16 zExit_m(0.0),
17 cosExitRotation_m(1.0),
18 sinExitRotation_m(0.0) {
19
20 int tmpInt;
21 std::string tmpString;
22 double tmpDouble;
23 int num_gridpz = -1;
24
26 std::ifstream file(Filename_m.c_str());
27
28 if (file.good()) {
29 bool parsing_passed = \
30 interpretLine<std::string, int, int, double>(file,
31 tmpString,
35 parsing_passed = parsing_passed &&
36 interpretLine<double, double, double, int>(file,
40 num_gridpz);
41 parsing_passed = parsing_passed &&
42 interpretLine<double, double, double, int>(file,
46 tmpInt);
47 for (int i = 0; (i < num_gridpz + 1) && parsing_passed; ++ i) {
48 parsing_passed = parsing_passed &&
49 interpretLine<double>(file, tmpDouble);
50 }
51
52 parsing_passed = parsing_passed &&
53 interpreteEOF(file);
54
55 file.close();
56 lines_read_m = 0;
57
58 if (!parsing_passed) {
63 } else {
64 // conversion cm to m
72 }
74 } else {
76 zbegin_entry_m = 0.0;
80 }
81}
82
84 if (EngeCoefs_entry_m != nullptr) {
85 delete[] EngeCoefs_entry_m;
86 delete[] EngeCoefs_exit_m;
87 }
88}
89
91 if (EngeCoefs_entry_m == nullptr) {
92 double tolerance = 1e-8;
93
94 std::ifstream in(Filename_m.c_str());
95
96 int tmpInt;
97 std::string tmpString;
98 double tmpDouble;
99
100 double minValue = 99999999.99, maxValue = -99999999.99;
101 int num_gridpz;
102 int num_gridp_fringe_entry, num_gridp_fringe_exit;
103 int num_gridp_before_fringe_entry, num_gridp_before_fringe_exit;
104 double *RealValues;
105 double *rightHandSide;
106 double *leastSquareMatrix;
107 double dZ;
108
109 interpretLine<std::string, int, int, double>(in, tmpString, tmpInt, tmpInt, tmpDouble);
110 interpretLine<double, double, double, int>(in, tmpDouble, tmpDouble, tmpDouble, num_gridpz);
111 interpretLine<double, double, double, int>(in, tmpDouble, tmpDouble, tmpDouble, tmpInt);
112
113 dZ = length_m / num_gridpz;
114
117
118 RealValues = new double[num_gridpz + 1];
119
120 for (int i = 0; i < num_gridpz + 1; ++i) {
121 interpretLine<double>(in, RealValues[i]);
122 if (RealValues[i] > maxValue) maxValue = RealValues[i];
123 else if (RealValues[i] < minValue) minValue = RealValues[i];
124 }
125 in.close();
126
127 // normalise the values //
128 for (int i = 0; i < num_gridpz + 1; ++i)
129 RealValues[i] = (RealValues[i] - minValue) / (maxValue - minValue);
130
131 // find begin of entry fringe field //
132 int i = 0;
133 while(i < num_gridpz + 1 && RealValues[i] < tolerance) ++i;
134 num_gridp_before_fringe_entry = i - 1;
135
136 // find end of entry fringe field //
137 while(i < num_gridpz + 1 && RealValues[i] < 1. - tolerance) ++i;
138 num_gridp_fringe_entry = i - 1 - num_gridp_before_fringe_entry;
139
140 // find begin of exit fringe field //
141 while(i < num_gridpz + 1 && RealValues[i] >= 1. - tolerance) ++i;
142 num_gridp_before_fringe_exit = i - 1;
143
144 while(i < num_gridpz + 1 && RealValues[i] > tolerance) ++i;
145 num_gridp_fringe_exit = i - 1 - num_gridp_before_fringe_exit;
146
147 // set the origin of the polynomials
148
149 int num_gridp_fringe = std::max(num_gridp_fringe_entry, num_gridp_fringe_exit);
151 leastSquareMatrix = new double[(polynomialOrder + 1) * num_gridp_fringe];
152 rightHandSide = new double[num_gridp_fringe];
153
154
155 double first = polynomialOrigin_entry_m - zbegin_entry_m - dZ * (num_gridp_before_fringe_entry + 1);
156 for (int i = 0; i < num_gridp_fringe_entry; ++i) {
157 double powerOfZ = 1.;
158 double Z = (first - dZ * i) / gapHeight_m;
159 rightHandSide[i] = log(1. / RealValues[num_gridp_before_fringe_entry + i + 1] - 1.);
160 for (int j = 0; j < polynomialOrder_entry_m + 1; ++j) {
161 leastSquareMatrix[i * (polynomialOrder_entry_m + 1) + j] = powerOfZ;
162 powerOfZ *= Z;
163 }
164 }
165
166 QRDecomposition::solve(leastSquareMatrix, EngeCoefs_entry_m, rightHandSide, num_gridp_fringe_entry, polynomialOrder_entry_m + 1);
167
168 first = polynomialOrigin_exit_m - zbegin_entry_m - dZ * (num_gridp_before_fringe_exit + 1);
169 for (int i = 0; i < num_gridp_fringe_exit; ++i) {
170 double powerOfZ = 1.;
171 double Z = (dZ * i - first) / gapHeight_m;
172 rightHandSide[i] = log(1. / RealValues[num_gridp_before_fringe_exit + i + 1] - 1.);
173 for (int j = 0; j < polynomialOrder_exit_m + 1; ++j) {
174 leastSquareMatrix[i * (polynomialOrder_exit_m + 1) + j] = powerOfZ;
175 powerOfZ *= Z;
176 }
177 }
178 QRDecomposition::solve(leastSquareMatrix, EngeCoefs_exit_m, rightHandSide, num_gridp_fringe_exit, polynomialOrder_exit_m + 1);
179
180 zbegin_exit_m = zbegin_entry_m + num_gridp_before_fringe_exit * dZ;
181 zend_exit_m = zbegin_exit_m + num_gridp_fringe_exit * dZ;
182 zbegin_entry_m += num_gridp_before_fringe_entry * dZ;
183 zend_entry_m = zbegin_entry_m + num_gridp_fringe_entry * dZ;
184
185 delete[] RealValues;
186 delete[] leastSquareMatrix;
187 delete[] rightHandSide;
188
189 INFOMSG(level3 << typeset_msg("read in fieldmap '" + Filename_m + "'", "info") << "\n"
190 << endl);
191
192 }
193}
194
196 if (EngeCoefs_entry_m != nullptr) {
197
198 delete[] EngeCoefs_entry_m;
199 delete[] EngeCoefs_exit_m;
200
201 INFOMSG(level3 << typeset_msg("freed fieldmap '" + Filename_m + "'", "info") << "\n"
202 << endl);
203
204 }
205}
206
208
209 info = Vector_t(0.0);
210
211 // Find coordinates in the entrance frame.
212 Vector_t REntrance(R(0), 0.0, R(2) + zbegin_entry_m);
213
214 // Find coordinates in the exit frame.
215 Vector_t RExit(0.0, R(1), 0.0);
216
217 RExit(0) = (R(0) - xExit_m) * cosExitRotation_m - (R(2) + zbegin_entry_m - zExit_m) * sinExitRotation_m;
219
220
221 if (REntrance(2) >= zend_entry_m && RExit(2) <= zbegin_exit_m) {
222 strength = Vector_t(1.0, 0.0, 0.0);
223 } else {
224 double d2Sdz2 = 0.0;
225 double z;
226 double *EngeCoefs;
227 int polynomialOrder;
228 info(0) = 1.0;
229 if (REntrance(2) >= zbegin_entry_m && REntrance(2) < zend_entry_m) {
230 z = -(REntrance(2) - polynomialOrigin_entry_m) / gapHeight_m;
231 EngeCoefs = EngeCoefs_entry_m;
232 polynomialOrder = polynomialOrder_entry_m;
233 } else if (RExit(2) > zbegin_exit_m && RExit(2) <= zend_exit_m) {
234 z = (RExit(2) - polynomialOrigin_exit_m) / gapHeight_m;
235 EngeCoefs = EngeCoefs_exit_m;
236 polynomialOrder = polynomialOrder_exit_m;
237 info(1) = 1.0;
238 } else {
239 return true;
240 }
241
242 double S = EngeCoefs[polynomialOrder] * z;
243 S += EngeCoefs[polynomialOrder - 1];
244 double dSdz = polynomialOrder * EngeCoefs[polynomialOrder];
245
246 for (int i = polynomialOrder - 2; i >= 0; i--) {
247 S = S * z + EngeCoefs[i];
248 dSdz = dSdz * z + (i + 1) * EngeCoefs[i + 1];
249 d2Sdz2 = d2Sdz2 * z + (i + 2) * (i + 1) * EngeCoefs[i + 2];
250 }
251 double expS = std::exp(S);
252 double f = 1.0 / (1.0 + expS);
253 if (f > 1.e-30) {
254 // First derivative of Enge function, f.
255 double dfdz = - f * ((f * expS) * dSdz);
256
257 // Second derivative of Enge functioin, f.
258 double d2fdz2 = ((-d2Sdz2 - dSdz * dSdz * (1. - 2. * (expS * f))) * (f * expS) * f) / (gapHeight_m * gapHeight_m);
259
260 strength(0) = f;
261 strength(1) = dfdz / gapHeight_m;
262 strength(2) = d2fdz2;
263 } else {
264 strength = Vector_t(0.0);
265 }
266
267 }
268 info(2) = exit_slope_m;
269
270 return true;
271
272 // info = Vector_t(0.0);
273 // const Vector_t tmpR(R(0), R(1), R(2) + zbegin_entry_m);
274 //
275 // if (tmpR(2) >= zend_entry_m && tmpR(2) <= exit_slope_m * tmpR(0) + zbegin_exit_m) {
276 // strength = Vector_t(1.0, 0.0, 0.0);
277 // info(0) = 3.0;
278 // } else {
279 // double S, dSdz, d2Sdz2 = 0.0;
280 // double expS, f, dfdz, d2fdz2;
281 // double z;
282 // double *EngeCoefs;
283 // int polynomialOrder;
284 // if (tmpR(2) >= zbegin_entry_m && tmpR(2) < zend_entry_m) {
285 // z = -(tmpR(2) - polynomialOrigin_entry_m) / gapHeight_m;
286 // EngeCoefs = EngeCoefs_entry_m;
287 // polynomialOrder = polynomialOrder_entry_m;
288 // info(0) = 1.0;
289 // } else if (tmpR(2) > exit_slope_m * tmpR(0) + zbegin_exit_m && tmpR(2) <= exit_slope_m * tmpR(0) + zend_exit_m) {
290 // z = (tmpR(2) - exit_slope_m * tmpR(0) - polynomialOrigin_exit_m) / sqrt(exit_slope_m * exit_slope_m + 1) / gapHeight_m;
291 // EngeCoefs = EngeCoefs_exit_m;
292 // polynomialOrder = polynomialOrder_exit_m;
293 // info(0) = 2.0;
294 // } else {
295 // return true;
296 // }
297 //
298 // S = EngeCoefs[polynomialOrder] * z;
299 // S += EngeCoefs[polynomialOrder - 1];
300 // dSdz = polynomialOrder * EngeCoefs[polynomialOrder];
301 //
302 // for (int i = polynomialOrder - 2; i >= 0; i--) {
303 // S = S * z + EngeCoefs[i];
304 // dSdz = dSdz * z + (i + 1) * EngeCoefs[i+1];
305 // d2Sdz2 = d2Sdz2 * z + (i + 2) * (i + 1) * EngeCoefs[i+2];
306 // }
307 // expS = exp(S);
308 // f = 1.0 / (1.0 + expS);
309 // if (f > 1.e-30) {
310 // dfdz = - f * ((f * expS) * dSdz); // first derivative of f
311 // d2fdz2 = ((-d2Sdz2 - dSdz * dSdz * (1. - 2. * (expS * f))) * (f * expS) * f) / (gapHeight_m * gapHeight_m); // second derivative of f
312 //
313 // strength(0) = f;
314 // strength(1) = dfdz / gapHeight_m;
315 // strength(2) = d2fdz2;
316 // } else {
317 // strength = Vector_t(0.0);
318 // }
319 //
320 // }
321 // info(1) = exit_slope_m;
322 // return true;
323
324}
325
326bool FM1DProfile2::getFieldDerivative(const Vector_t &/*R*/, Vector_t &/*E*/, Vector_t &/*B*/, const DiffDirection &/*dir*/) const {
327 return false;
328}
329
330void FM1DProfile2::getFieldDimensions(double &zBegin, double &zEnd) const {
331 zBegin = zbegin_entry_m;
332 zEnd = zend_exit_m;
333}
334void FM1DProfile2::getFieldDimensions(double &/*xIni*/, double &/*xFinal*/, double &/*yIni*/, double &/*yFinal*/, double &/*zIni*/, double &/*zFinal*/) const {}
335
337{}
338
340 (*msg) << Filename_m << " (1D Profile type 2); zini= " << zbegin_entry_m << " m; zfinal= " << zend_exit_m << " m;" << endl;
341}
342
344 return 0.0;
345}
346
347void FM1DProfile2::setFrequency(double /*freq*/)
348{}
349
350void FM1DProfile2::setExitFaceSlope(const double &m) {
351 exit_slope_m = m;
352}
353
354void FM1DProfile2::setEdgeConstants(const double &bendAngle, const double &entranceAngle, const double &exitAngle) {
355
357
358 zExit_m = polynomialOrigin_entry_m + deltaZ * std::cos(bendAngle / 2.0);
359 xExit_m = -deltaZ * std::sin(bendAngle / 2.0);
360
361 cosExitRotation_m = std::cos(-bendAngle + entranceAngle + exitAngle);
362 sinExitRotation_m = std::sin(-bendAngle + entranceAngle + exitAngle);
363}
364
366 void solve(double *Matrix, double *Solution, double *rightHandSide, const int &M, const int &N) {
367 double sinphi;
368 double cosphi;
369 double tempValue;
370 double len;
371 double *R = new double[M * N];
372 double *tempVector = new double[M];
373 double *residuum = new double[M];
374
375 for (int i = 0; i < M; ++i) {
376 for (int j = 0; j < N; ++j)
377 R[i * N + j] = Matrix[i * N + j];
378 tempVector[i] = rightHandSide[i];
379 }
380
381 /* using Givens rotations */
382 for (int i = 0; i < N; ++i) {
383 for (int j = i + 1; j < M; ++j) {
384 len = std::sqrt(R[j * N + i] * R[j * N + i] + R[i * (N + 1)] * R[i * (N + 1)]);
385 sinphi = -R[j * N + i] / len;
386 cosphi = R[i * (N + 1)] / len;
387
388 for (int k = 0; k < N; ++k) {
389 tempValue = cosphi * R[ i * N + k] - sinphi * R[ j * N + k];
390 R[j * N + k] = sinphi * R[ i * N + k] + cosphi * R[ j * N + k];
391 R[i * N + k] = tempValue;
392 }
393 }
394 }
395
396 /* one step of iterative refinement */
397
398 // cout << "A^T*b" << endl;
399 for (int i = 0; i < N; ++i) { /* A^T*b */
400 tempValue = 0.0;
401 for (int j = 0; j < M; ++j) {
402 tempValue += Matrix[j * N + i] * rightHandSide[j];
403 }
404 Solution[i] = tempValue;
405 }
406 // cout << "R^-TA^T*b" << endl;
407 for (int i = 0; i < N; ++i) { /* R^-T*A^T*b */
408 tempValue = 0.0;
409 for (int j = 0; j < i; ++j)
410 tempValue += R[j * N + i] * residuum[j];
411 residuum[i] = (Solution[i] - tempValue) / R[i * (N + 1)];
412 }
413 // cout << "R^-1R^-TA^T*b" << endl;
414 for (int i = N - 1; i >= 0; --i) { /* R^-1*R^-T*A^T*b */
415 tempValue = 0.0;
416 for (int j = N - 1; j > i; --j)
417 tempValue += R[i * N + j] * Solution[j];
418 Solution[i] = (residuum[i] - tempValue) / R[i * (N + 1)];
419 }
420 // cout << "b - A*x" << endl;
421 for (int i = 0; i < M; ++i) {
422 tempValue = 0.0;
423 for (int j = 0; j < N; ++j)
424 tempValue += Matrix[i * N + j] * Solution[j];
425 residuum[i] = rightHandSide[i] - tempValue;
426 }
427 // cout << "A^T*r" << endl;
428 for (int i = 0; i < N; ++i) {
429 tempValue = 0.0;
430 for (int j = 0; j < M; ++j)
431 tempValue += Matrix[j * N + i] * residuum[j];
432 tempVector[i] = tempValue;
433 }
434 // cout << "R^-TA^T*r" << endl;
435 for (int i = 0; i < N; ++i) {
436 tempValue = 0.0;
437 for (int j = 0; j < i; ++j)
438 tempValue += R[j * N + i] * residuum[j];
439 residuum[i] = (tempVector[i] - tempValue) / R[i * (N + 1)];
440 }
441 // cout << "R^-1R^-TA^T*r" << endl;
442 for (int i = N - 1; i >= 0; --i) {
443 tempValue = 0.0;
444 for (int j = N - 1; j > i; --j)
445 tempValue += R[i * N + j] * tempVector[j];
446 tempVector[i] = (residuum[i] - tempValue) / R[i * (N + 1)];
447 Solution[i] += tempVector[i];
448 }
449
450 // for (int i = 0; i < N; ++i)
451 // cout << Solution[i] << endl;
452 // cout << endl;
453
454 delete[] residuum;
455 delete[] tempVector;
456 delete[] R;
457
458 }
459
460}
@ T1DProfile2
Definition: Fieldmap.h:23
DiffDirection
Definition: Fieldmap.h:54
Tps< T > log(const Tps< T > &x)
Natural logarithm.
Definition: TpsMath.h:182
Tps< T > cos(const Tps< T > &x)
Cosine.
Definition: TpsMath.h:129
Tps< T > exp(const Tps< T > &x)
Exponential.
Definition: TpsMath.h:165
Tps< T > sin(const Tps< T > &x)
Sine.
Definition: TpsMath.h:111
Tps< T > sqrt(const Tps< T > &x)
Square root.
Definition: TpsMath.h:91
T::PETE_Expr_t::PETE_Return_t max(const PETE_Expr< T > &expr, NDIndex< D > &loc)
Definition: ReductionLoc.h:84
Inform & endl(Inform &inf)
Definition: Inform.cpp:42
Inform & level3(Inform &inf)
Definition: Inform.cpp:47
#define INFOMSG(msg)
Definition: IpplInfo.h:348
void solve(double *Matrix, double *Solution, double *rightHandSide, const int &M, const int &N)
constexpr double e
The value of.
Definition: Physics.h:39
constexpr double cm2m
Definition: Units.h:35
bool info
Info flag.
Definition: Options.cpp:28
Matrix.
Definition: Matrix.h:39
MapType Type
Definition: Fieldmap.h:114
bool interpreteEOF(std::ifstream &in)
Definition: Fieldmap.cpp:558
void disableFieldmapWarning()
Definition: Fieldmap.cpp:613
int lines_read_m
Definition: Fieldmap.h:118
static std::string typeset_msg(const std::string &msg, const std::string &title)
Definition: Fieldmap.cpp:652
std::string Filename_m
Definition: Fieldmap.h:117
void noFieldmapWarning()
Definition: Fieldmap.cpp:621
double zend_entry_m
Definition: FM1DProfile2.h:31
double cosExitRotation_m
Cos and sin of the exit edge rotation with respect to the local coordinates.
Definition: FM1DProfile2.h:55
double zend_exit_m
Definition: FM1DProfile2.h:37
double polynomialOrigin_entry_m
Definition: FM1DProfile2.h:32
double * EngeCoefs_entry_m
Definition: FM1DProfile2.h:27
virtual double getFrequency() const
double polynomialOrigin_exit_m
Definition: FM1DProfile2.h:38
double sinExitRotation_m
Definition: FM1DProfile2.h:56
FM1DProfile2(std::string aFilename)
double zbegin_entry_m
Definition: FM1DProfile2.h:30
double zbegin_exit_m
Definition: FM1DProfile2.h:36
int polynomialOrder_entry_m
Definition: FM1DProfile2.h:33
virtual void setFrequency(double freq)
double * EngeCoefs_exit_m
Definition: FM1DProfile2.h:28
int polynomialOrder_exit_m
Definition: FM1DProfile2.h:39
virtual bool getFieldstrength(const Vector_t &X, Vector_t &strength, Vector_t &info) const
virtual void swap()
double gapHeight_m
Definition: FM1DProfile2.h:44
virtual bool getFieldDerivative(const Vector_t &X, Vector_t &E, Vector_t &B, const DiffDirection &dir) const
double exit_slope_m
Definition: FM1DProfile2.h:35
double xExit_m
Definition: FM1DProfile2.h:48
virtual void readMap()
virtual void setEdgeConstants(const double &bendAngle, const double &entranceAngle, const double &exitAngle)
virtual void getFieldDimensions(double &zBegin, double &zEnd) const
virtual void setExitFaceSlope(const double &)
double zExit_m
Definition: FM1DProfile2.h:52
double length_m
Definition: FM1DProfile2.h:43
virtual void freeMap()
virtual void getInfo(Inform *)
Definition: Inform.h:42
Vektor< double, 3 > Vector_t
Definition: Vektor.h:6