OPAL (Object Oriented Parallel Accelerator Library)  2024.1
OPAL
CSRWakeFunction.cpp
Go to the documentation of this file.
1 //
2 // Class CSRWakeFunction
3 //
4 // Copyright (c) 2008 - 2020, Paul Scherrer Institut, Villigen PSI, Switzerland
5 // All rights reserved
6 //
7 // This file is part of OPAL.
8 //
9 // OPAL is free software: you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation, either version 3 of the License, or
12 // (at your option) any later version.
13 //
14 // You should have received a copy of the GNU General Public License
15 // along with OPAL. If not, see <https://www.gnu.org/licenses/>.
16 //
18 
19 #include "AbsBeamline/RBend.h"
20 #include "AbsBeamline/SBend.h"
23 #include "Filters/Filter.h"
24 #include "Filters/SavitzkyGolay.h"
25 #include "Physics/Physics.h"
27 #include "Utilities/Options.h"
28 #include "Utilities/Util.h"
29 
30 #include <cmath>
31 #include <fstream>
32 #include <iostream>
33 
35  std::vector<Filter*> filters,
36  const unsigned int& N):
37  WakeFunction(name, N),
38  filters_m(filters.begin(), filters.end()),
39  lineDensity_m(),
40  dlineDensitydz_m(),
41  bendRadius_m(0.0),
42  totalBendAngle_m(0.0)
43 {
44  if (filters_m.size() == 0) {
45  defaultFilter_m.reset(new SavitzkyGolayFilter(7, 3, 3, 3));
46  filters_m.push_back(defaultFilter_m.get());
47  }
48 
49  diffOp_m = filters_m.back();
50 }
51 
53  Inform msg("CSRWake ");
54 
55  const double sPos = bunch->get_sPos();
56  std::pair<double, double> meshInfo;
57  calculateLineDensity(bunch, meshInfo);
58  const double &meshSpacing = meshInfo.second;
59  const double &meshOrigin = meshInfo.first + 0.5 * meshSpacing;
60 
61  if (Ez_m.size() < lineDensity_m.size()) {
62  Ez_m.resize(lineDensity_m.size(), 0.0);
63  Psi_m.resize(lineDensity_m.size(), 0.0);
64  }
65 
66  Vector_t smin, smax;
67  bunch->get_bounds(smin, smax);
68  double minPathLength = smin(2) + sPos - FieldBegin_m;
69  if (sPos + smax(2) < FieldBegin_m) return;
70 
71  Ez_m[0] = 0.0;
72  // calculate wake field of bunch
73  for (unsigned int i = 1; i < lineDensity_m.size(); ++i) {
74  Ez_m[i] = 0.0;
75 
76  double angleOfSlice = 0.0;
77  double pathLengthOfSlice = minPathLength + i * meshSpacing;
78  if (pathLengthOfSlice > 0.0)
79  angleOfSlice = pathLengthOfSlice / bendRadius_m;
80 
81  calculateContributionInside(i, angleOfSlice, meshSpacing);
82  calculateContributionAfter(i, angleOfSlice, meshSpacing);
83 
84  Ez_m[i] /= (4. * Physics::pi * Physics::epsilon_0);
85  }
86 
87  // calculate the wake field seen by the particles
88  for (unsigned int i = 0; i < bunch->getLocalNum(); ++i) {
89  const Vector_t &R = bunch->R[i];
90  double distanceToOrigin = (R(2) - meshOrigin) / meshSpacing;
91 
92  unsigned int indexz = (unsigned int)floor(distanceToOrigin);
93  double leverz = distanceToOrigin - indexz;
94  PAssert_LT(indexz, lineDensity_m.size() - 1);
95 
96  bunch->Ef[i](2) += (1. - leverz) * Ez_m[indexz] + leverz * Ez_m[indexz + 1];
97  }
98 
99  if (Options::csrDump) {
100  static std::string oldBendName;
101  static unsigned long counter = 0;
102 
103  if (oldBendName != bendName_m) counter = 0;
104 
105  const int every = 1;
106  bool print_criterion = (counter + 1) % every == 0;
107  if (print_criterion) {
108  static unsigned int file_number = 0;
109  if (counter == 0) file_number = 0;
110  if (Ippl::myNode() == 0) {
111  std::stringstream filename_str;
112  filename_str << bendName_m << "-CSRWake" << std::setw(5) << std::setfill('0') << file_number << ".txt";
113  std::string fname = Util::combineFilePath({
115  filename_str.str()
116  });
117 
118  std::ofstream csr(fname);
119  csr << std::setprecision(8);
120  csr << "# " << sPos + smin(2) - FieldBegin_m << "\t" << sPos + smax(2) - FieldBegin_m << std::endl;
121  for (unsigned int i = 0; i < lineDensity_m.size(); ++ i) {
122  csr << i *meshSpacing << "\t"
123  << Ez_m[i] << "\t"
124  << lineDensity_m[i] << "\t"
125  << dlineDensitydz_m[i] << std::endl;
126  }
127  csr.close();
128  msg << "** wrote " << fname << endl;
129  }
130  ++ file_number;
131  }
132  ++ counter;
133  oldBendName = bendName_m;
134  }
135 }
136 
138  if (ref->getType() == ElementType::RBEND ||
139  ref->getType() == ElementType::SBEND) {
140 
141  const Bend2D *bend = static_cast<const Bend2D *>(ref);
142  double End;
143 
144  bendRadius_m = bend->getBendRadius();
145  bend->getDimensions(Begin_m, End);
146  Length_m = bend->getEffectiveLength();
147  FieldBegin_m = bend->getEffectiveCenter() - Length_m / 2.0;
149  bendName_m = bend->getName();
150  }
151 }
152 
154  std::pair<double, double>& meshInfo) {
155  bunch->calcLineDensity(nBins_m, lineDensity_m, meshInfo);
156 
157  std::vector<Filter *>::const_iterator fit;
158  for (fit = filters_m.begin(); fit != filters_m.end(); ++ fit) {
159  (*fit)->apply(lineDensity_m);
160  }
161 
162  dlineDensitydz_m.assign(lineDensity_m.begin(), lineDensity_m.end());
163  diffOp_m->calc_derivative(dlineDensitydz_m, meshInfo.second);
164 }
165 
166 void CSRWakeFunction::calculateContributionInside(size_t sliceNumber, double angleOfSlice, double meshSpacing) {
167  if (angleOfSlice > totalBendAngle_m || angleOfSlice < 0.0) return;
168 
169  const double meshSpacingsup = std::pow(meshSpacing, -1. / 3.);
170  double SlippageLength = std::pow(angleOfSlice, 3) * bendRadius_m / 24.;
171  double relativeSlippageLength = SlippageLength / meshSpacing;
172  if (relativeSlippageLength > sliceNumber) {
173 
174  /*
175  Break integral into sum of integrals between grid points, then
176  use linear interpolation between each grid point.
177  */
178 
179  double dx1 = std::pow(sliceNumber, 2. / 3.);
180  double dx2 = std::pow(sliceNumber, 5. / 3.);
181  double dx3 = std::pow(sliceNumber - 1., 5. / 3.);
182  Ez_m[sliceNumber] += 0.3 * meshSpacingsup * dlineDensitydz_m[0] * (5. * dx1 - 3. * dx2 + 3. * dx3);
183  for (unsigned int j = 1; j < sliceNumber; ++ j) {
184  dx1 = dx2;
185  dx2 = dx3;
186  dx3 = std::pow(sliceNumber - j - 1., 5. / 3.);
187  Ez_m[sliceNumber] += 0.9 * meshSpacingsup * dlineDensitydz_m[j] * (dx1 - 2.* dx2 + dx3);
188  }
189  Ez_m[sliceNumber] += 0.9 * meshSpacingsup * dlineDensitydz_m[sliceNumber];
190 
191  } else if (relativeSlippageLength < 1) {
192 
193  // First do transient term.
194  if (4.0 * relativeSlippageLength <= 1) {
195 
196  Ez_m[sliceNumber] += 3.0 * std::pow(SlippageLength, 2.0 / 3.0) * (lineDensity_m[sliceNumber] - lineDensity_m[sliceNumber - 1]) / meshSpacing;
197  } else {
198 
199  if (4.0 * relativeSlippageLength < sliceNumber) {
200 
201  int j = sliceNumber - static_cast<int>(std::floor(4.0 * relativeSlippageLength));
202  double frac = 4.0 * relativeSlippageLength - (sliceNumber - j);
203  Ez_m[sliceNumber] -= (frac * lineDensity_m[j - 1] + (1. - frac) * lineDensity_m[j]) / std::pow(SlippageLength, 1. / 3.);
204 
205  }
206 
207  Ez_m[sliceNumber] += (relativeSlippageLength * lineDensity_m[sliceNumber - 1] + (1. - relativeSlippageLength) * lineDensity_m[sliceNumber]) / std::pow(SlippageLength, 1. / 3.);
208 
209  }
210 
211  // Now do steady state term.
212  Ez_m[sliceNumber] += (0.3 / meshSpacing) * std::pow(SlippageLength, 2. / 3.) * (5. * dlineDensitydz_m[sliceNumber] - 2. * relativeSlippageLength * (dlineDensitydz_m[sliceNumber] - dlineDensitydz_m[sliceNumber - 1]));
213 
214  } else {
215 
216  if (4. * relativeSlippageLength < sliceNumber) {
217 
218  int j = sliceNumber - static_cast<int>(std::floor(4. * relativeSlippageLength));
219  double frac = 4. * relativeSlippageLength - (sliceNumber - j);
220  Ez_m[sliceNumber] -= (frac * lineDensity_m[j - 1] + (1. - frac) * lineDensity_m[j]) / std::pow(SlippageLength, 1. / 3.);
221 
222  }
223 
224  int j = sliceNumber - static_cast<int>(std::floor(SlippageLength / meshSpacing));
225  double frac = relativeSlippageLength - (sliceNumber - j);
226  Ez_m[sliceNumber] += (frac * lineDensity_m[j - 1] + (1. - frac) * lineDensity_m[j]) / std::pow(SlippageLength, 1. / 3.);
227 
228  double dx1 = std::pow(sliceNumber - j + frac, 2. / 3.);
229  double dx2 = std::pow(sliceNumber - j, 2. / 3.);
230  double dx3 = std::pow(sliceNumber - j + frac, 5. / 3.);
231  double dx4 = std::pow(sliceNumber - j, 5. / 3.);
232 
233  Ez_m[sliceNumber] += 1.5 * meshSpacingsup * dlineDensitydz_m[j - 1] * (dx1 - dx2);
234  Ez_m[sliceNumber] += 0.3 * meshSpacingsup * (dlineDensitydz_m[j] - dlineDensitydz_m[j - 1]) * (5.*(dx1 - dx2) + 3.*(dx3 - dx4));
235 
236  dx1 = dx2;
237  dx2 = dx4;
238  dx3 = std::pow(sliceNumber - j - 1., 5. / 3.);
239  Ez_m[sliceNumber] += 0.3 * meshSpacingsup * dlineDensitydz_m[j] * (5.*dx1 - 3.*dx2 + 3.*dx3);
240  for (unsigned int k = j + 1; k < sliceNumber; ++ k) {
241  dx1 = dx2;
242  dx2 = dx3;
243  dx3 = std::pow(sliceNumber - k - 1., 5. / 3.);
244  Ez_m[sliceNumber] += 0.9 * meshSpacingsup * dlineDensitydz_m[k] * (dx1 - 2.*dx2 + dx3);
245  }
246  Ez_m[sliceNumber] += 0.9 * meshSpacingsup * dlineDensitydz_m[sliceNumber];
247  }
248  double prefactor = -2. / std::pow(3. * bendRadius_m * bendRadius_m, 1. / 3.);
249  Ez_m[sliceNumber] *= prefactor;
250 }
251 
252 void CSRWakeFunction::calculateContributionAfter(size_t sliceNumber, double angleOfSlice, double meshSpacing) {
253  if (angleOfSlice <= totalBendAngle_m) return;
254 
255  double Ds_max = bendRadius_m * std::pow(totalBendAngle_m, 3) / 24. * (4. - 3.* totalBendAngle_m / angleOfSlice);
256 
257  // First do contribution from particles whose retarded position is
258  // prior to the bend.
259  double Ds_max2 = bendRadius_m * std::pow(totalBendAngle_m, 2) / 6. * (3. * angleOfSlice - 2. * totalBendAngle_m);
260  int j = 0;
261  double frac = 0.0;
262  if (Ds_max2 / meshSpacing < sliceNumber) {
263  j = sliceNumber - static_cast<int>(floor(Ds_max2 / meshSpacing));
264  frac = Ds_max2 / meshSpacing - (sliceNumber - j);
265  Ez_m[sliceNumber] -= (frac * lineDensity_m[j - 1] + (1. - frac) * lineDensity_m[j]) / (2. * angleOfSlice - totalBendAngle_m);
266  }
267 
268  // Now do delta function contribution for particles whose retarded position
269  // is in the bend.
270  if (Ds_max / meshSpacing < sliceNumber) {
271  j = sliceNumber - static_cast<int>(floor(Ds_max / meshSpacing));
272  frac = Ds_max / meshSpacing - (sliceNumber - j);
273  Ez_m[sliceNumber] += (frac * lineDensity_m[j - 1] + (1.0 - frac) * lineDensity_m[j]) / (2. * angleOfSlice - totalBendAngle_m);
274  }
275 
276  // Now do integral contribution for particles whose retarded position is in
277  // the bend.
278 
279  double angleOverlap = angleOfSlice - totalBendAngle_m;
280  int k = sliceNumber;
281  if (Ds_max / meshSpacing < sliceNumber) {
282  k = j;
283  Psi_m[k] = calcPsi(Psi_m[k], angleOverlap, meshSpacing * (k + frac));
284  if (Psi_m[k] > 0 && Psi_m[k] < totalBendAngle_m)
285  Ez_m[sliceNumber] += 0.5 * (frac * dlineDensitydz_m[sliceNumber - k - 1] + (1.0 - frac) * dlineDensitydz_m[sliceNumber - k]) / (Psi_m[k] + 2.0 * angleOverlap);
286  } else {
287  Psi_m[0] = calcPsi(Psi_m[0], angleOverlap, meshSpacing * sliceNumber);
288  if (Psi_m[0] > 0 && Psi_m[0] < totalBendAngle_m)
289  Ez_m[sliceNumber] += 0.5 * dlineDensitydz_m[0] / (Psi_m[0] + 2.0 * angleOverlap);
290  }
291 
292  // Do rest of integral.
293  for (unsigned int l = sliceNumber - k + 1; l < sliceNumber; ++ l) {
294  Psi_m[l] = calcPsi(Psi_m[l], angleOverlap, meshSpacing * (sliceNumber - l));
295  if (Psi_m[l] > 0 && Psi_m[l] < totalBendAngle_m)
296  Ez_m[sliceNumber] += dlineDensitydz_m[l] / (Psi_m[l] + 2.0 * angleOverlap);
297  }
298 
299  // We don't go right to the end as there is a singularity in the numerical integral that we don't quite know
300  // how to deal with properly yet. This introduces a very slight error in the calculation (fractions of a percent).
301  Psi_m[sliceNumber] = calcPsi(Psi_m[sliceNumber], angleOverlap, meshSpacing / 4.0);
302  if (Psi_m[sliceNumber] > 0 && Psi_m[sliceNumber] < totalBendAngle_m)
303  Ez_m[sliceNumber] += 0.5 * dlineDensitydz_m[sliceNumber] / (Psi_m[sliceNumber] + 2.0 * angleOverlap);
304 
305  double prefactor = -4 / bendRadius_m;
306  Ez_m[sliceNumber] *= prefactor;
307 }
308 
309 double CSRWakeFunction::calcPsi(const double& psiInitial, const double& x, const double& Ds) const {
317  const int Nmax = 100;
318  const double eps = 1e-10;
319 
320  double psi = std::pow(24. * Ds / bendRadius_m, 1. / 3.);
321  if (psiInitial != 0.0) psi = psiInitial;
322 
323  for (int i = 0; i < Nmax; ++i) {
324  double residual = bendRadius_m * psi * psi * psi * (psi + 4. * x) - 24. * Ds * psi - 24. * Ds * x;
325  if (std::abs(residual) < eps)
326  return psi;
327 
328  psi -= residual / (4. * bendRadius_m * psi * psi * psi + 12. * x * bendRadius_m * psi * psi - 24. * Ds);
329  }
330 
331  RootFinderForCSR rootFinder(bendRadius_m, 4 * x * bendRadius_m, -24 * Ds, -24 * Ds * x);
332  if (rootFinder.hasPositiveRealRoots()) {
333  return rootFinder.searchRoot(eps);
334  }
335 
336  ERRORMSG("In CSRWakeFunction::calcPsi(): exceed maximum number of iterations!" << endl);
337  return psi;
338 }
339 
342 }
const unsigned int nBins_m
Definition: WakeFunction.h:52
static OpalData * getInstance()
Definition: OpalData.cpp:196
PETE_TUTree< FnAbs, typename T::PETE_Expr_t > abs(const PETE_Expr< T > &l)
constexpr double epsilon_0
The permittivity of vacuum in As/Vm.
Definition: Physics.h:51
static int myNode()
Definition: IpplInfo.cpp:691
Definition: Bend2D.h:51
ParticleAttrib< Vector_t > Ef
#define ERRORMSG(msg)
Definition: IpplInfo.h:350
void get_bounds(Vector_t &rmin, Vector_t &rmax) const
void calculateLineDensity(PartBunchBase< double, 3 > *bunch, std::pair< double, double > &meshInfo)
double get_sPos() const
double searchRoot(const double &tol)
virtual const std::string & getName() const
Get element name.
clearpage the user may choose between constant or variable radius This model includes fringe fields begin
Definition: multipole_t.tex:6
constexpr double pi
The value of .
Definition: Physics.h:30
std::vector< Filter * > filters_m
Inform & endl(Inform &inf)
Definition: Inform.cpp:42
std::string bendName_m
double getBendAngle() const
Definition: BendBase.h:92
#define PAssert_LT(a, b)
Definition: PAssert.h:106
LineDensity lineDensity_m
double calcPsi(const double &psiInitial, const double &x, const double &Ds) const
bool csrDump
Definition: Options.cpp:67
std::vector< double > Psi_m
std::string getAuxiliaryOutputDirectory() const
get the name of the the additional data directory
Definition: OpalData.cpp:666
double getEffectiveCenter() const
Definition: Bend2D.h:295
CSRWakeFunction(const std::string &name, std::vector< Filter * > filters, const unsigned int &N)
size_t getLocalNum() const
std::vector< double > Ez_m
void calculateContributionInside(size_t sliceNumber, double angleOfSlice, double meshSpacing)
Definition: Inform.h:42
virtual ElementType getType() const =0
Get element type std::string.
std::shared_ptr< Filter > defaultFilter_m
void calculateContributionAfter(size_t sliceNumber, double angleOfSlice, double meshSpacing)
const std::string name
ParticlePos_t & R
std::string combineFilePath(std::initializer_list< std::string > ilist)
Definition: Util.cpp:197
WakeType
Definition: WakeFunction.h:28
void initialize(const ElementBase *ref) override
virtual void calc_derivative(std::vector< double > &histogram, const double &h)=0
double getBendRadius() const
Definition: Bend2D.h:290
virtual WakeType getType() const override
virtual void getDimensions(double &sBegin, double &sEnd) const override
Definition: Bend2D.h:284
void calcLineDensity(unsigned int nBins, std::vector< double > &lineDensity, std::pair< double, double > &meshInfo)
calculates the 1d line density (not normalized) and append it to a file.
constexpr double e
The value of .
Definition: Physics.h:39
LineDensity dlineDensitydz_m
Tps< T > pow(const Tps< T > &x, int y)
Integer power.
Definition: TpsMath.h:76
PETE_TUTree< FnFloor, typename T::PETE_Expr_t > floor(const PETE_Expr< T > &l)
Definition: PETE.h:733
end
Definition: multipole_t.tex:9
void apply(PartBunchBase< double, 3 > *bunch) override
double getEffectiveLength() const
Definition: Bend2D.h:300