OPAL (Object Oriented Parallel Accelerator Library) 2022.1
OPAL
RecursionRelationTwo.cpp
Go to the documentation of this file.
1/*
2 * Copyright (c) 2018, Martin Duy Tat
3 * All rights reserved.
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 * 1. Redistributions of source code must retain the above copyright notice,
7 * this list of conditions and the following disclaimer.
8 * 2. Redistributions in binary form must reproduce the above copyright notice,
9 * this list of conditions and the following disclaimer in the documentation
10 * and/or other materials provided with the distribution.
11 * 3. Neither the name of STFC nor the names of its contributors may be used to
12 * endorse or promote products derived from this software without specific
13 * prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include <cmath>
29#include <vector>
30#include <iostream>
33#include "TwoPolynomial.h"
34
35namespace polynomial {
36
37RecursionRelationTwo::RecursionRelationTwo(): power_m(0), highestXorder_m(10) {
38 std::vector<int> poly2(1, 1);
39 std::vector<std::vector<int>> poly1;
40 poly1.push_back(poly2);
41 TwoPolynomial poly(poly1);
42 operator_m.setPolynomial(poly, 0, 0);
43}
44
46 const std::size_t &highestXorder):
47 power_m(power), highestXorder_m(highestXorder) {
48 std::vector<int> poly2(1, 1);
49 std::vector<std::vector<int>> poly1;
50 poly1.push_back(poly2);
51 TwoPolynomial poly(poly1);
52 operator_m.setPolynomial(poly, 0, 0);
53 for (std::size_t i = 0; i < power_m; i++) {
55 truncate(highestXorder);
56 sortTerms();
57 }
58}
59
61 const RecursionRelationTwo &doperator):
62 operator_m(DifferentialOperatorTwo(doperator.operator_m)),
63 power_m(doperator.power_m), highestXorder_m(doperator.highestXorder_m) {
64}
65
67}
68
70 const RecursionRelationTwo &recursion) {
71 operator_m = recursion.operator_m;
72 power_m = recursion.power_m;
74 return *this;
75}
76
77/* This function increases n by 1 in the differential operator used to find \n
78 * the magnetic scalar potential
79 */
81/* Differential operator has 3 terms, make three copies of current operator */
85/* Initialise polynomials
86 * p(x) = s - xs^2 + x^2s^3 - ...
87 * q(x) = 1 - x + x^2 - ...
88 */
89 std::vector<std::vector<int>> p, q;
90 p.resize(highestXorder_m + 1);
91 q.resize(highestXorder_m + 1);
92 for (std::size_t i = 0; i <= highestXorder_m; i++) {
93 p[i].resize(highestXorder_m + 2, 0);
94 q[i].resize(highestXorder_m + 1, 0);
95 p[i][i + 1] = pow(-1, i);
96 q[i][i] = pow(-1, i);
97 }
98/* Differentiate first term by x, then multiply by p(x) */
99 firstTerm.differentiateX();
100 firstTerm.multiplyPolynomial(TwoPolynomial(p));
101/* Differentiate second term twice by x */
102 secondTerm.differentiateX();
103 secondTerm.differentiateX();
104/* Differentiate third term by s, multiply by q(x)
105 * and then differentiate by s again
106 */
107 thirdTerm.differentiateS();
108 thirdTerm.multiplyPolynomial(TwoPolynomial(q));
109 thirdTerm.differentiateS();
110 thirdTerm.multiplyPolynomial(TwoPolynomial(q));
111/* Add operators to obtain final operator */
113 operator_m.addOperator(secondTerm);
114 operator_m.addOperator(thirdTerm);
115}
116
117}
Tps< T > pow(const Tps< T > &x, int y)
Integer power.
Definition: TpsMath.h:76
void setPolynomial(const TwoPolynomial &poly, const std::size_t &x, const std::size_t &s)
void multiplyPolynomial(const TwoPolynomial &poly)
void addOperator(const DifferentialOperatorTwo &doperator)
void truncate(std::size_t highestXorder)
RecursionRelationTwo & operator=(const RecursionRelationTwo &recursion)