OPAL (Object Oriented Parallel Accelerator Library) 2022.1
OPAL
DifferentialOperatorTwo.cpp
Go to the documentation of this file.
1/*
2 * Copyright (c) 2018, Martin Duy Tat
3 * All rights reserved.
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 * 1. Redistributions of source code must retain the above copyright notice,
7 * this list of conditions and the following disclaimer.
8 * 2. Redistributions in binary form must reproduce the above copyright notice,
9 * this list of conditions and the following disclaimer in the documentation
10 * and/or other materials provided with the distribution.
11 * 3. Neither the name of STFC nor the names of its contributors may be used to
12 * endorse or promote products derived from this software without specific
13 * prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include <iostream>
29#include <vector>
31#include "PolynomialSum.h"
32#include "TwoPolynomial.h"
33
34namespace polynomial {
35
37 xDerivatives_m(0), sDerivatives_m(0){
38 std::vector<int> dummy1;
39 dummy1.push_back(1);
40 std::vector<std::vector<int>> dummy2;
41 dummy2.push_back(dummy1);
42 polynomials_m.resize(1);
43 polynomials_m[0].push_back(PolynomialSum(TwoPolynomial(dummy2)));
44}
45
47 const std::size_t &xDerivatives,
48 const std::size_t &sDerivatives):
49 xDerivatives_m(xDerivatives), sDerivatives_m(sDerivatives) {
50 polynomials_m.resize(xDerivatives_m + 1);
51 for (std::size_t i = 0; i <= xDerivatives_m; i++) {
52 polynomials_m[i].resize(sDerivatives_m + 1);
53 }
54}
55
57 const DifferentialOperatorTwo &doperator):
58 polynomials_m(doperator.polynomials_m),
59 xDerivatives_m(doperator.xDerivatives_m),
60 sDerivatives_m(doperator.sDerivatives_m) {
61}
62
64}
65
67 const DifferentialOperatorTwo &doperator) {
68 polynomials_m = doperator.polynomials_m;
71 return *this;
72}
73
74void DifferentialOperatorTwo::resizeX(const std::size_t &xDerivatives) {
75 std::size_t oldxDerivatives = xDerivatives_m;
76 xDerivatives_m = xDerivatives;
77 polynomials_m.resize(xDerivatives_m + 1);
78 if (xDerivatives_m > oldxDerivatives) {
79 for (std::size_t i = oldxDerivatives + 1; i <= xDerivatives_m; i++) {
80 polynomials_m[i].resize(sDerivatives_m + 1);
81 }
82 }
83}
84
85void DifferentialOperatorTwo::resizeS(const std::size_t &sDerivatives) {
86 sDerivatives_m = sDerivatives;
87 for (std::size_t i = 0; i <= xDerivatives_m; i++) {
88 polynomials_m[i].resize(sDerivatives_m + 1);
89 }
90}
91
94 for (std::size_t j = 0; j <= sDerivatives_m; j++) {
95 std::size_t i = xDerivatives_m;
96 while (i != 0) {
97 i--;
98 polynomials_m[i + 1][j].addPolynomial(polynomials_m[i][j]);
99 polynomials_m[i][j].differentiateX();
100 }
101 }
102}
103
106 for (std::size_t i = 0; i <= xDerivatives_m; i++) {
107 std::size_t j = sDerivatives_m;
108 while (j != 0) {
109 j--;
110 polynomials_m[i][j + 1].addPolynomial(polynomials_m[i][j]);
111 polynomials_m[i][j].differentiateS();
112 }
113 }
114}
115
116void DifferentialOperatorTwo::multiplyPolynomial(const TwoPolynomial &poly) {
117 for (std::size_t i = 0; i <= xDerivatives_m; i++) {
118 for (std::size_t j = 0; j <= sDerivatives_m; j++) {
119 polynomials_m[i][j].multiplyPolynomial(poly);
120 }
121 }
122}
123
124void DifferentialOperatorTwo::setPolynomial(const TwoPolynomial &poly,
125 const std::size_t &x,
126 const std::size_t &s) {
127 if (x > xDerivatives_m) {
128 resizeX(x);
129 }
130 if (s > sDerivatives_m) {
131 resizeS(s);
132 }
133 polynomials_m[x][s] = PolynomialSum(poly);
134}
135
137 for (std::size_t i = 0; i <= xDerivatives_m; i++) {
138 for (std::size_t j = 0; j <= sDerivatives_m; j++) {
139 std::size_t zeros = 0;
140 std::cout << "(";
141 for (std::size_t k = 0;
142 k < polynomials_m[i][j].numberOfTerms(); k++) {
143 if (polynomials_m[i][j].isPolynomialZero(k)) zeros++;
144 }
145 if (zeros != polynomials_m[i][j].numberOfTerms()) {
146 polynomials_m[i][j].printPolynomial();
147 std::cout << "(d/dx)^" << i << "(d/ds)^" << j << ")";
148 }
149 }
150 }
151 std::cout << std::endl;
152}
153
155 const DifferentialOperatorTwo &doperator) {
156 if (xDerivatives_m < doperator.xDerivatives_m) {
157 resizeX(doperator.xDerivatives_m);
158 }
159 if (sDerivatives_m < doperator.sDerivatives_m) {
160 resizeS(doperator.sDerivatives_m);
161 }
162 for (std::size_t i = 0; i <= doperator.xDerivatives_m; i++) {
163 for (std::size_t j = 0; j <= doperator.sDerivatives_m; j++) {
164 polynomials_m[i][j].addPolynomial(doperator.polynomials_m[i][j]);
165 }
166 }
167}
168
170 const std::size_t &s,
171 const std::size_t &term) const {
172 if (x > xDerivatives_m || s > sDerivatives_m) {
173 return true;
174 }
175 return polynomials_m[x][s].isPolynomialZero(term);
176}
177
179 const std::size_t &truncateOrder) {
180 for (std::size_t i = 0; i <= xDerivatives_m; i++) {
181 for (std::size_t j = 0; j <= sDerivatives_m; j++) {
182 polynomials_m[i][j].truncate(truncateOrder);
183 }
184 }
185}
186
188 const double &x,
189 const double &s,
190 const std::size_t &xDerivative,
191 const std::size_t &sDerivative,
192 const std::vector<double> &dSvalues) const {
193 if (xDerivative > xDerivatives_m || sDerivative > sDerivatives_m) {
194 return 0.0;
195 }
196 return polynomials_m[xDerivative][sDerivative]
197 .evaluatePolynomial2(x, s, dSvalues);
198}
199
201 const std::size_t &xDerivatives,
202 const std::size_t &sDerivatives) const {
203 if (xDerivatives > xDerivatives_m || sDerivatives > sDerivatives_m) {
204 return 0;
205 }
206 return polynomials_m[xDerivatives][sDerivatives].numberOfTerms();
207}
208
210 const std::size_t &xDerivatives,
211 const std::size_t &sDerivatives,
212 const std::size_t &p) const{
213 if (xDerivatives > xDerivatives_m || sDerivatives > sDerivatives_m) {
214 std::vector<std::size_t> dummy;
215 return dummy;
216 }
217 return polynomials_m[xDerivatives][sDerivatives].getdSfactors(p);
218}
219
221 for (std::size_t i = 0; i <= xDerivatives_m; i++) {
222 for (std::size_t j = 0; j <= sDerivatives_m; j++) {
223 polynomials_m[i][j].sortTerms();
224 }
225 }
226}
227
228}
Inform & endl(Inform &inf)
Definition: Inform.cpp:42
void setPolynomial(const TwoPolynomial &poly, const std::size_t &x, const std::size_t &s)
DifferentialOperatorTwo & operator=(const DifferentialOperatorTwo &doperator)
bool isPolynomialZero(const std::size_t &x, const std::size_t &s, const std::size_t &term) const
void multiplyPolynomial(const TwoPolynomial &poly)
double evaluatePolynomial(const double &x, const double &s, const std::size_t &xDerivative, const std::size_t &sDerivative, const std::vector< double > &dSvalues) const
void resizeX(const std::size_t &xDerivatives)
void truncate(const std::size_t &truncateOrder)
std::size_t numberOfTerms(const std::size_t &xDerivatives, const std::size_t &sDerivatives) const
std::vector< std::vector< PolynomialSum > > polynomials_m
std::vector< std::size_t > getdSFactors(const std::size_t &xDerivatives, const std::size_t &sDerivatives, const std::size_t &p) const
void addOperator(const DifferentialOperatorTwo &doperator)
void resizeS(const std::size_t &sDerivatives)