Source code for opal.visualization.ProbePlotter

# Copyright (c) 2019 - 2020, Matthias Frey, Paul Scherrer Institut, Villigen PSI, Switzerland
# All rights reserved
#
# Implemented as part of the PhD thesis
# "Precise Simulations of Multibunches in High Intensity Cyclotrons"
#
# This file is part of pyOPALTools.
#
# pyOPALTools is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

# You should have received a copy of the GNU General Public License
# along with pyOPALTools. If not, see <https://www.gnu.org/licenses/>.

from .BasePlotter import *
import numpy as np

[docs]class ProbePlotter(BasePlotter):
[docs] def __init__(self): pass
[docs] def plot_probe_histogram(self, **kwargs): """Plot a histogram of the probe histogram bin count vs. radius. Parameters ---------- grid : bool, optional Draw grid scale : bool, optional Scales to 1.0 (default: False) bunch : int, optional Bunch number (default: 0) begin : int, optional Start step (default: 0) end : int, optional End step (default: ds.size) **kwargs In case of H5: additional arguments passed to matplotlib.pyplot.hist Returns ------- matplotlib.pyplot Plot handle """ try: from opal import filetype ylabel = self.ds.getLabel('bincount') if self.ds.filetype == filetype.HIST: bincount = self.ds.getData('bincount') rmin = self.ds.getData('min') rmax = self.ds.getData('max') nbins = self.ds.getData('nbins') #dr = self.ds.getData('binsize') radius = np.linspace(float(rmin), float(rmax), nbins) if kwargs.pop('scale', False): bincount = np.asarray(bincount) / max(bincount ) ylabel += ' (normalized)' plt.grid(kwargs.pop('grid', False)) plt.plot(radius, bincount, **kwargs) plt.xlabel('radius [' + self.ds.getUnit('min') + ']') elif self.ds.filetype == filetype.H5: x = [] y = [] bunch = kwargs.pop('bunch', -1) begin = kwargs.pop('begin', 0) end = kwargs.pop('end', self.ds.size) for s in range(begin, end): x.extend(self.ds.selectData(var='x', step=s, bunch=bunch)) y.extend(self.ds.selectData(var='y', step=s, bunch=bunch)) plt.hist(np.hypot(x, y), **kwargs) plt.xlabel('radius [' + self.ds.getUnit('x') + ']') if kwargs.pop('density', False): ylabel = 'density' plt.ylabel(ylabel) return plt except Exception as ex: opal_logger.exception(ex) return plt.figure()