Source code for opal.visualization.GridPlotter

# Copyright (c) 2018 - 2019, Matthias Frey, Paul Scherrer Institut, Villigen PSI, Switzerland
# All rights reserved
#
# Implemented as part of the PhD thesis
# "Precise Simulations of Multibunches in High Intensity Cyclotrons"
#
# This file is part of pyOPALTools.
#
# pyOPALTools is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.

# You should have received a copy of the GNU General Public License
# along with pyOPALTools. If not, see <https://www.gnu.org/licenses/>.

from .BasePlotter import *
import numpy as np


[docs]class GridPlotter(BasePlotter):
[docs] def __init__(self): pass
[docs] def plot_grids_per_level(self, **kwargs): """Plot a time series of the number of grids per level and the total number of grids. """ try: hspan = kwargs.pop('hspan', [None, None]) grid = kwargs.pop('grid', False) xscale = kwargs.pop('xscale', 'linear') yscale = kwargs.pop('yscale', 'linear') if hspan[0] and hspan[1]: plt.axhspan(hspan[0], hspan[1], alpha=0.25, color='purple', label='[' + str(hspan[0]) + ', ' + str(hspan[1]) +']') nLevels = self.ds.getNumLevels() time = self.ds.getData('time') total = [0] * len(time) for l in range(nLevels): level = self.ds.getData('level-' + str(l)) plt.plot(time, level, label='level ' + str(l)) total += level plt.plot(time, total, label='total') plt.xlabel(self.ds.getLabelWithUnit('time')) plt.ylabel('#grids') plt.xscale(xscale) plt.yscale(yscale) plt.grid(grid, which='both') plt.tight_layout() plt.legend() return plt except Exception as ex: opal_logger.exception(ex) return plt.figure()
[docs] def plot_grid_histogram(self, **kwargs): """Plot a time series of the minimum, maximum and average number of grids per core. """ try: hspan = kwargs.pop('hspan', [None, None]) grid = kwargs.pop('grid', False) xscale = kwargs.pop('xscale', 'linear') yscale = kwargs.pop('yscale', 'linear') nCores= self.ds.getNumCores() if hspan[0] and hspan[1]: mingrid = hspan[0] / float(nCores) maxgrid = hspan[1] / float(nCores) # 2. Feb. 2018 # https://stackoverflow.com/questions/23248435/fill-between-two-vertical-lines-in-matplotlib plt.axhspan(mingrid, maxgrid, alpha=0.25, color='purple', label='optimum') time = self.ds.getData('time') low = np.asarray([np.Inf] * len(time)) high = np.asarray([-np.Inf] * len(time)) avg = np.asarray([0.0] * len(time)) for c in range(nCores): data = self.ds.getData('processor-' + str(c)) low = np.minimum(low, data) avg += data high = np.maximum(high, data) #for j in range(len(data)): # low[j] = min(low[j], data[j]) # avg[j] = avg[j] + data[j] # high[j] = max(high[j], data[j]) avg /= float(nCores) plt.plot(time, low, label='minimum') plt.plot(time, high, label='maximum') plt.plot(time, avg, label='mean') plt.xscale(xscale) plt.yscale(yscale) plt.xlabel(self.ds.getLabelWithUnit('time')) plt.ylabel('#grids per core') plt.grid(grid, which='both') plt.tight_layout() plt.legend() return plt except Exception as ex: opal_logger.exception(ex) return plt.figure()