#include <MapAnalyser.h>
|
void | eigenDecomp_m (const fMatrix_t &M, cfMatrix_t &eigenVal, cfMatrix_t &eigenVec, cfMatrix_t &invEigenVec) |
|
cfMatrix_t | getBlockDiagonal_m (const fMatrix_t &M, cfMatrix_t &eigenVecM, cfMatrix_t &invEigenVecM) |
|
void | printPhaseShift_m (fMatrix_t &Sigma, fMatrix_t tM, cfMatrix_t &oldN) |
|
void | setNMatrix_m (fMatrix_t &M, cfMatrix_t &N, cfMatrix_t &invN) |
|
fMatrix_t | createRotMatrix_m (std::array< double, 3 > phi) |
|
fMatrix_t | createSkewMatrix_m () |
|
fMatrix_t | realPartOfMatrix_m (cfMatrix_t cM) |
|
fMatrix_t | imagPartOfMatrix_m (cfMatrix_t cM) |
|
cfMatrix_t | complexTypeMatrix_m (fMatrix_t M) |
|
cfMatrix_t | invertMatrix_m (const cfMatrix_t &M) |
|
void | rearrangeEigen_m (cfMatrix_t &, cfMatrix_t &) |
|
void | normalizeEigen_m (cfMatrix_t &eigenVec, cfMatrix_t &invEigenVec) |
|
Definition at line 39 of file MapAnalyser.h.
◆ cfMatrix_t
◆ fMatrix_t
◆ MapAnalyser()
MapAnalyser::MapAnalyser |
( |
| ) |
|
◆ complexTypeMatrix_m()
◆ createRotMatrix_m()
◆ createSkewMatrix_m()
◆ eigenDecomp_m()
Eigen-decomposition of M
\[ \mathbf{M} = \mathbf{E} \mathbf{\Lambda} \mathbf{E}^{-1} \]
- Parameters
-
M | Matrix to analyze |
eigenVal | EigenValues of \(\mathbf{M}\) \(\mathbf{\Lambda}\) |
eigenVec | EigenVectors of \(\mathbf{M}\) \(\mathbf{E}\) |
invEigenVec | inverted EigenVectors of \(\mathbf{M}\) \(\mathbf{E}^{-1}\) |
Definition at line 46 of file MapAnalyser.cpp.
Referenced by setNMatrix_m().
◆ getBlockDiagonal_m()
Returns the block diagonal form rotation matrix \( \mathbf{R}\).
This Matrix gets created by applying a symplectic and its inverse Matrix \(U\) on M \( \mathbf{R} = \mathbf{UMU}^{-1}\) [Wolski_2005]
\[ \mathbf{R}_{\left( \mu_x,\mu_y, \mu_z \right)}= \begin{pmatrix} \mathbf{R}_{2\left( \mu_x\right)} & 0 &0 \\ 0 & \mathbf{R}_{2\left( \mu_y\right)} &0 \\ 0 & 0 &\mathbf{R}_{2\left( \mu_z\right)} \end{pmatrix} , \qquad \mathbf{R_2}_{\left( \alpha \right)}= \begin{pmatrix} \cos\left( \alpha \right) & \sin\left( \alpha \right)\\ -\sin\left( \alpha \right) & \cos\left( \alpha \right)\\ \end{pmatrix} \]
- Parameters
-
M | Matrix to analyze |
eigenVec | EigenVectors of \(\mathbf{M}\) |
invEigenVec | inverted EigenVectors of \(\mathbf{M}\) |
Definition at line 101 of file MapAnalyser.cpp.
References sqrt().
◆ imagPartOfMatrix_m()
◆ invertMatrix_m()
◆ linSigAnalyze()
void MapAnalyser::linSigAnalyze |
( |
fMatrix_t & |
| ) |
|
|
inline |
◆ linTAnalyze()
void MapAnalyser::linTAnalyze |
( |
const fMatrix_t & |
| ) |
|
|
inline |
Analyzes the transfer matrix for tunes, symplecticity and stability
- Parameters
-
Definition at line 52 of file MapAnalyser.h.
◆ normalizeEigen_m()
◆ printPhaseShift_m()
◆ realPartOfMatrix_m()
◆ rearrangeEigen_m()
◆ setNMatrix_m()
sets a symplectic \( \mathbf{N} \) matrix.
This function is a subfunction of ThickTracker::getBlockDiagonal. [Wolski_2005]
- Parameters
-
M | Matrix to analyze |
N | symplectic \(\mathbf{N}\) matrix |
invN | inverted symplectic \(\mathbf{N}^{-1}\) matrix |
Definition at line 168 of file MapAnalyser.cpp.
References eigenDecomp_m(), and sqrt().
Referenced by printPhaseShift_m().
◆ bunchAnalysis_m
◆ mapAnalysis_m
The documentation for this class was generated from the following files: