OPAL (Object Oriented Parallel Accelerator Library)  2021.1.99
OPAL
SavitzkyGolay.cpp
Go to the documentation of this file.
2 #include "gsl/gsl_fft_real.h"
3 #include "gsl/gsl_fft_halfcomplex.h"
4 #include <iostream>
5 
6 #include <cmath>
7 
8 SavitzkyGolayFilter::SavitzkyGolayFilter(int np, int nl, int nr, int m):
9  NumberPoints_m(np),
10  NumberPointsLeft_m(nl),
11  NumberPointsRight_m(nr),
12  PolynomialOrder_m(m),
13  Coefs_m(np, 0.0),
14  CoefsDeriv_m(np, 0.0) {
17 }
18 
19 void SavitzkyGolayFilter::apply(std::vector<double> &LineDensity) {
20  std::vector<double> temp(LineDensity.size(), 0.0);
21  convlv(LineDensity, Coefs_m, 1, temp);
22  LineDensity.assign(temp.begin(), temp.end());
23 }
24 
25 void SavitzkyGolayFilter::calc_derivative(std::vector<double> &LineDensity, const double &/*h*/) {
26  std::vector<double> temp(LineDensity.size(), 0.0);
27  convlv(LineDensity, CoefsDeriv_m, 1, temp);
28  LineDensity.assign(temp.begin(), temp.end());
29 }
30 
31 
32 void savgol(std::vector<double> &c, const int &np, const int &nl, const int &nr, const int &ld, const int &m) {
33  int j, k, imj, ipj, kk, mm;
34  double d, sum;
35 
36  if (np < nl + nr + 1 || nl < 0 || nr < 0 || ld > m || nl + nr < m) {
37  std::cerr << "bad args in savgol" << std::endl;
38  return;
39  }
40  std::vector<int> indx(m + 1, 0);
41  std::vector<double> a((m + 1) * (m + 1), 0.0);
42  std::vector<double> b(m + 1, 0.0);
43 
44  for (ipj = 0; ipj <= (m << 1); ++ipj) {
45  sum = (ipj ? 0.0 : 1.0);
46  for (k = 1; k <= nr; ++k)
47  sum += (int)pow((double)k, (double)ipj);
48  for (k = 1; k <= nl; ++k)
49  sum += (int)pow((double) - k, (double)ipj);
50  mm = (ipj < 2 * m - ipj ? ipj : 2 * m - ipj);
51  for (imj = -mm; imj <= mm; imj += 2)
52  a[(ipj + imj) / 2 * (m + 1) + (ipj - imj) / 2] = sum;
53  }
54  ludcmp(a, indx, d);
55 
56  for (j = 0; j < m + 1; ++j)
57  b[j] = 0.0;
58  b[ld] = 1.0;
59 
60  lubksb(a, indx, b);
61  for (kk = 0; kk < np; ++kk)
62  c[kk] = 0.0;
63  for (k = -nl; k <= nr; ++k) {
64  sum = b[0];
65  double fac = 1.0;
66  for (mm = 1; mm <= m; ++mm)
67  sum += b[mm] * (fac *= k);
68  kk = (np - k) % np;
69  c[kk] = sum;
70  }
71 
72 }
73 
74 void convlv(const std::vector<double> &data, const std::vector<double> &respns, const int &isign, std::vector<double> &ans) {
75  int n = data.size();
76  int m = respns.size();
77 
78  double *tempfd1 = new double[n];
79  double *tempfd2 = new double[n];
80 
81  gsl_fft_halfcomplex_wavetable *hc;
82  gsl_fft_real_wavetable *real = gsl_fft_real_wavetable_alloc(n);
83  gsl_fft_real_workspace *work = gsl_fft_real_workspace_alloc(n);
84 
85 
86  for (int i = 0; i < n; ++ i) {
87  tempfd1[i] = 0.0;
88  tempfd2[i] = data[i];
89  }
90 
91  tempfd1[0] = respns[0];
92  for (int i = 1; i < (m + 1) / 2; ++i) {
93  tempfd1[i] = respns[i];
94  tempfd1[n - i] = respns[m - i];
95  }
96 
97  gsl_fft_real_transform(tempfd1, 1, n, real, work);
98  gsl_fft_real_transform(tempfd2, 1, n, real, work);
99 
100  gsl_fft_real_wavetable_free(real);
101  hc = gsl_fft_halfcomplex_wavetable_alloc(n);
102 
103  if (isign == 1) {
104  for (int i = 1; i < n - 1; i += 2) {
105  double tmp = tempfd1[i];
106  tempfd1[i] = (tempfd1[i] * tempfd2[i] - tempfd1[i + 1] * tempfd2[i + 1]);
107  tempfd1[i + 1] = (tempfd1[i + 1] * tempfd2[i] + tmp * tempfd2[i + 1]);
108  }
109  tempfd1[0] *= tempfd2[0];
110  tempfd1[n - 1] *= tempfd2[n - 1];
111  }
112 
113  gsl_fft_halfcomplex_inverse(tempfd1, 1, n, hc, work);
114 
115  for (int i = 0; i < n; ++i) {
116  ans[i] = tempfd1[i];
117  }
118 
119  gsl_fft_halfcomplex_wavetable_free(hc);
120  gsl_fft_real_workspace_free(work);
121 
122  delete[] tempfd1;
123  delete[] tempfd2;
124 }
125 
126 void ludcmp(std::vector<double> &a, std::vector<int> &indx, double &d) {
127  const double TINY = 1.0e-20;
128  int i, imax = -1, j, k;
129  double big, dum, sum, temp;
130 
131  int n = indx.size();
132  std::vector<double> vv(n, 0.0);
133 
134  d = 1.0;
135  for (i = 0; i < n; ++i) {
136  big = 0.0;
137  for (j = 0; j < n; ++j)
138  if ((temp = std::abs(a[i * n + j])) > big) big = temp;
139 
140  if (big == 0.0) {
141  std::cerr << "Singular matrix in routine ludcmp" << std::endl;
142  return;
143  }
144  vv[i] = 1. / big;
145  }
146 
147  for (j = 0; j < n; ++j) {
148  for (i = 0; i < j; ++i) {
149  sum = a[i * n + j];
150  for (k = 0; k < i; ++k)
151  sum -= a[i * n + k] * a[k * n + j];
152  a[i * n + j] = sum;
153  }
154  big = 0.0;
155  for (i = j; i < n; ++i) {
156  sum = a[i * n + j];
157  for (k = 0; k < j; ++k)
158  sum -= a[i * n + k] * a[k * n + j];
159  a[i * n + j] = sum;
160  if ((dum = vv[i] * std::abs(sum)) >= big) {
161  big = dum;
162  imax = i;
163  }
164  }
165 
166  if (j != imax) {
167  for (k = 0; k < n; ++k) {
168  dum = a[imax * n + k];
169  a[imax * n + k] = a[j * n + k];
170  a[j * n + k] = dum;
171  }
172  d = -d;
173  vv[imax] = vv[j];
174  }
175  indx[j] = imax;
176  if (a[j * n + j] == 0.0) a[j * n + j] = TINY;
177  if (j != n - 1) {
178  dum = 1. / a[j * n + j];
179  for (i = j + 1; i < n; ++i)
180  a[i * n + j] *= dum;
181  }
182  }
183 }
184 
185 void lubksb(std::vector<double> &a, std::vector<int> &indx, std::vector<double> &b) {
186  int i, ii = 0, ip, j;
187  double sum;
188  int n = indx.size();
189 
190  for (i = 0; i < n; ++i) {
191  ip = indx[i];
192  sum = b[ip];
193  b[ip] = b[i];
194  if (ii != 0)
195  for (j = ii - 1; j < i; ++j)
196  sum -= a[i * n + j] * b[j];
197  else if (sum != 0.0)
198  ii = i + 1;
199  b[i] = sum;
200  }
201  for (i = n - 1; i >= 0; --i) {
202  sum = b[i];
203  for (j = i + 1; j < n; ++j)
204  sum -= a[i * n + j] * b[j];
205  b[i] = sum / a[i * n + i];
206  }
207 
208 }
Tps< T > pow(const Tps< T > &x, int y)
Integer power.
Definition: TpsMath.h:76
void convlv(const std::vector< double > &data, const std::vector< double > &respns, const int &isign, std::vector< double > &ans)
void ludcmp(std::vector< double > &a, std::vector< int > &indx, double &d)
void lubksb(std::vector< double > &a, std::vector< int > &indx, std::vector< double > &b)
void savgol(std::vector< double > &c, const int &np, const int &nl, const int &nr, const int &ld, const int &m)
FLieGenerator< T, N > real(const FLieGenerator< std::complex< T >, N > &)
Take real part of a complex generator.
const int nr
Definition: ClassicRandom.h:24
std::complex< double > a
PETE_TUTree< FnAbs, typename T::PETE_Expr_t > abs(const PETE_Expr< T > &l)
T::PETE_Expr_t::PETE_Return_t sum(const PETE_Expr< T > &expr)
Definition: PETE.h:1111
Inform & endl(Inform &inf)
Definition: Inform.cpp:42
constexpr double c
The velocity of light in m/s.
Definition: Physics.h:51
void apply(std::vector< double > &histogram)
std::vector< double > Coefs_m
Definition: SavitzkyGolay.h:20
std::vector< double > CoefsDeriv_m
Definition: SavitzkyGolay.h:21
SavitzkyGolayFilter(int np, int nl, int nr, int m)
void calc_derivative(std::vector< double > &histogram, const double &h)