OPAL (Object Oriented Parallel Accelerator Library)  2021.1.99
OPAL
MultipoleTCurvedConstRadius.cpp
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2017, Titus Dascalu
3  * Copyright (c) 2018, Martin Duy Tat
4  * All rights reserved.
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  * 1. Redistributions of source code must retain the above copyright notice,
8  * this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright notice,
10  * this list of conditions and the following disclaimer in the documentation
11  * and/or other materials provided with the distribution.
12  * 3. Neither the name of STFC nor the names of its contributors may be used to
13  * endorse or promote products derived from this software without specific
14  * prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
20  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 
31 #include "gsl/gsl_sf_pow_int.h"
32 
33 using namespace endfieldmodel;
34 
36  const std::string &name):
38  maxOrderX_m(10),
39  planarArcGeometry_m(1.0, 1.0),
40  angle_m(0.0) {
41 }
42 
44  const MultipoleTCurvedConstRadius &right):
45  MultipoleTBase(right),
46  maxOrderX_m(right.maxOrderX_m),
47  recursion_m(right.recursion_m),
48  planarArcGeometry_m(right.planarArcGeometry_m),
49  angle_m(right.angle_m) {
51 }
52 
54 }
55 
57  return new MultipoleTCurvedConstRadius(*this);
58 }
59 
61  double radius = getLength() / angle_m;
62  double alpha = atan(R[2] / (R[0] + radius ));
63  if (alpha != 0.0 && angle_m != 0.0) {
64  R[0] = R[2] / sin(alpha) - radius;
65  R[2] = radius * alpha;// + getBoundingBoxLength();
66  } else {
67  //R[2] = R[2] + getBoundingBoxLength();
68  }
69 }
70 
72  const Vector_t &R) {
73  double theta = R[2] * angle_m / getLength();
74  double Bx = B[0];
75  double Bs = B[2];
76  B[0] = Bx * cos(theta) - Bs * sin(theta);
77  B[2] = Bx * sin(theta) + Bs * cos(theta);
78 }
79 
80 void MultipoleTCurvedConstRadius::setMaxOrder(const std::size_t &maxOrder) {
82  std::size_t N = recursion_m.size();
83  while (maxOrder >= N) {
84  polynomial::RecursionRelation r(N, 2 * (N + maxOrderX_m + 1));
87  recursion_m.push_back(r);
88  N = recursion_m.size();
89  }
90 }
91 
92 double MultipoleTCurvedConstRadius::getRadius(const double &/*s*/) {
93  if (angle_m == 0.0) {
94  return -1.0;
95  } else {
96  return getLength() / angle_m;
97  }
98 }
99 
101  const double &/*s*/) {
102  return (1 + x * angle_m / getLength());
103 }
104 
105 double MultipoleTCurvedConstRadius::getFn(const std::size_t &n,
106  const double &x,
107  const double &s) {
108  if (n == 0) {
109  return getTransDeriv(0, x) * getFringeDeriv(0, s);
110  }
111  double rho = getLength() / angle_m;
112  double func = 0.0;
113  for (std::size_t j = 0;
114  j <= recursion_m.at(n).getMaxSDerivatives();
115  j++) {
116  double FringeDerivj = getFringeDeriv(2 * j, s);
117  for (std::size_t i = 0;
118  i <= recursion_m.at(n).getMaxXDerivatives();
119  i++) {
120  if (recursion_m.at(n).isPolynomialZero(i, j)) {
121  continue;
122  }
123  func += (recursion_m.at(n).evaluatePolynomial(x / rho, i, j)
124  * getTransDeriv(i, x) * FringeDerivj)
125  / gsl_sf_pow_int(rho, 2 * n - i - 2 * j);
126  }
127  }
128  func *= gsl_sf_pow_int(-1.0, n);
129  return func;
130 }
131 
Tps< T > cos(const Tps< T > &x)
Cosine.
Definition: TpsMath.h:129
Tps< T > sin(const Tps< T > &x)
Sine.
Definition: TpsMath.h:111
PETE_TUTree< FnArcTan, typename T::PETE_Expr_t > atan(const PETE_Expr< T > &l)
Definition: PETE.h:727
const std::string name
constexpr double alpha
The fine structure constant, no dimension.
Definition: Physics.h:78
PartBunchBase< double, 3 > * RefPartBunch_m
Definition: Component.h:194
std::size_t getTransMaxOrder() const
virtual void setMaxOrder(const std::size_t &maxOrder)
double getLength() const
double getTransDeriv(const std::size_t &n, const double &x)
double getFringeDeriv(const std::size_t &n, const double &s)
std::vector< polynomial::RecursionRelation > recursion_m
virtual void transformBField(Vector_t &B, const Vector_t &R) override
virtual double getFn(const std::size_t &n, const double &x, const double &s) override
MultipoleTCurvedConstRadius(const std::string &name)
virtual double getRadius(const double &s) override
virtual void setMaxOrder(const std::size_t &maxOrder) override
virtual void transformCoords(Vector_t &R) override
virtual double getScaleFactor(const double &x, const double &s) override
virtual ElementBase * clone() const override
void resizeX(const std::size_t &xDerivatives)
void truncate(std::size_t highestXorder)