OPAL (Object Oriented Parallel Accelerator Library) 2022.1
OPAL
MultipoleT.cpp
Go to the documentation of this file.
1/*
2 * Copyright (c) 2017, Titus Dascalu
3 * Copyright (c) 2018, Martin Duy Tat
4 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * 1. Redistributions of source code must retain the above copyright notice,
8 * this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright notice,
10 * this list of conditions and the following disclaimer in the documentation
11 * and/or other materials provided with the distribution.
12 * 3. Neither the name of STFC nor the names of its contributors may be used to
13 * endorse or promote products derived from this software without specific
14 * prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
20 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29
31#include "MultipoleT.h"
32#include <gsl/gsl_math.h>
37
38using namespace endfieldmodel;
39
40MultipoleT::MultipoleT(const std::string &name):
42 fringeField_l(endfieldmodel::Tanh()),
43 fringeField_r(endfieldmodel::Tanh()),
44 maxOrder_m(5),
45 maxOrderX_m(10),
46 transMaxOrder_m(0),
47 planarArcGeometry_m(1., 1.),
48 length_m(1.0),
49 angle_m(0.0),
50 entranceAngle_m(0.0),
51 rotation_m(0.0),
52 variableRadius_m(false),
53 boundingBoxLength_m(0.0),
54 verticalApert_m(0.5),
55 horizApert_m(0.5) {
56}
57
59 Component(right),
60 fringeField_l(right.fringeField_l),
61 fringeField_r(right.fringeField_r),
62 maxOrder_m(right.maxOrder_m),
63 maxOrderX_m(right.maxOrderX_m),
64 recursion_VarRadius_m(right.recursion_VarRadius_m),
65 recursion_ConstRadius_m(right.recursion_ConstRadius_m),
66 transMaxOrder_m(right.transMaxOrder_m),
67 transProfile_m(right.transProfile_m),
68 planarArcGeometry_m(right.planarArcGeometry_m),
69 length_m(right.length_m),
70 angle_m(right.angle_m),
71 entranceAngle_m(right.entranceAngle_m),
72 rotation_m(right.rotation_m),
73 variableRadius_m(right.variableRadius_m),
74 boundingBoxLength_m(right.boundingBoxLength_m),
75 verticalApert_m(right.verticalApert_m),
76 horizApert_m(right.horizApert_m),
77 dummy() {
79}
80
82}
83
85 MultipoleT* newMultipole = new MultipoleT(*this);
86 newMultipole->initialise();
87 return newMultipole;
88}
89
91 RefPartBunch_m = nullptr;
92}
93
94bool MultipoleT::apply(const Vector_t &R, const Vector_t &/*P*/,
95 const double &/*t*/,Vector_t &/*E*/, Vector_t &B) {
97 Vector_t R_prime = rotateFrame(R);
99 //R_prime[2] *= -1; //OPAL uses different sign convention...
100 Vector_t X = R_prime;
101 R_prime = transformCoords(X);
102 if (insideAperture(R_prime)) {
104 double theta;
105 double prefactor = (length_m / angle_m) * (tanh((fringeField_l.getX0())
109 if (angle_m == 0.0) {
110 theta = 0.0;
111 } else if (!variableRadius_m) {
112 theta = R_prime[2] * angle_m / length_m;
113 } else { // variableRadius_m == true
114 theta = fringeField_l.getLambda() * log(cosh((R_prime[2] +
116 fringeField_r.getLambda() * log(cosh((R_prime[2] -
118 theta /= prefactor;
119 }
120 double Bx = getBx(R_prime);
121 double Bs = getBs(R_prime);
122 B[0] = Bx * cos(theta) - Bs * sin(theta);
123 B[2] = Bx * sin(theta) + Bs * cos(theta);
124 B[1] = getBz(R_prime);
125 // B[2] *= -1; //OPAL uses different sign convention
126 return false;
127 } else {
128 for(int i = 0; i < 3; i++) {
129 B[i] = 0.0;
130 }
132 }
133}
134
135bool MultipoleT::apply(const size_t &i, const double &t,
136 Vector_t &E, Vector_t &B) {
137 return apply(RefPartBunch_m->R[i], RefPartBunch_m->P[i], t, E, B);
138}
139
141 Vector_t R_prime(3), R_pprime(3);
146 // 1st rotation
147 R_prime[0] = R[0] * cos(rotation_m) + R[1] * sin(rotation_m);
148 R_prime[1] = - R[0] * sin(rotation_m) + R[1] * cos(rotation_m);
149 R_prime[2] = R[2];
150 // 2nd rotation
151 R_pprime[0] = R_prime[2] * sin(entranceAngle_m) +
152 R_prime[0] * cos(entranceAngle_m);
153 R_pprime[1] = R_prime[1];
154 R_pprime[2] = R_prime[2] * cos(entranceAngle_m) -
155 R_prime[0] * sin(entranceAngle_m);
156 return R_pprime;
157
158}
159
165 Vector_t B_prime(3);
166 B_prime[0] = B[0] * cos(rotation_m) + B[1] * sin(rotation_m);
167 B_prime[1] = - B[0] * sin(rotation_m) + B[1] * cos(rotation_m);
168 B_prime[2] = B[2];
169 return B_prime;
170}
171
173 if (std::abs(R[1]) <= verticalApert_m / 2. && std::abs(R[0]) <= horizApert_m / 2.) {
174 return true;
175 }
176 else {
177 return false;
178 }
179}
180
182 Vector_t X(3);
183 // If radius is constant
184 if (!variableRadius_m) {
185 double radius = length_m / angle_m;
186 // Transform from Cartesian to Frenet-Serret along the magnet
187 double alpha = atan(R[2] / (R[0] + radius ));
188 if (alpha != 0.0 && angle_m != 0.0) {
189 X[0] = R[2] / sin(alpha) - radius;
190 X[1] = R[1];
191 X[2] = radius * alpha;// + boundingBoxLength_m;
192 } else {
193 X[0] = R[0];
194 X[1] = R[1];
195 X[2] = R[2];// + boundingBoxLength_m;
196 }
197 } else {
198 // If radius is variable
203 (length_m / angle_m));
204 std::vector<double> r = t.getTransformation();
205 X[0] = r[0];
206 X[1] = r[1];
207 X[2] = r[2];
208 }
209 return X;
210}
211
212void MultipoleT::setMaxOrder(std::size_t maxOrder) {
213 if (variableRadius_m && angle_m != 0.0) {
214 std::size_t N = recursion_VarRadius_m.size();
215 while (maxOrder >= N) {
219 recursion_VarRadius_m.push_back(r);
220 N = recursion_VarRadius_m.size();
221 }
222 } else if (!variableRadius_m && angle_m != 0.0) {
223 std::size_t N = recursion_ConstRadius_m.size();
224 while (maxOrder >= N) {
225 polynomial::RecursionRelation r(N, 2 * (N + maxOrderX_m + 1));
228 recursion_ConstRadius_m.push_back(r);
229 N = recursion_ConstRadius_m.size();
230 }
231 }
232 maxOrder_m = maxOrder;
233}
234
235void MultipoleT::setTransProfile(std::size_t n, double dTn) {
236 if (n > transMaxOrder_m) {
238 transProfile_m.resize(n+1, 0.0);
239 }
240 transProfile_m[n] = dTn;
241}
242
243bool MultipoleT::setFringeField(double s0, double lambda_l, double lambda_r) {
244 fringeField_l.Tanh::setLambda(lambda_l);
245 fringeField_l.Tanh::setX0(s0);
246 fringeField_l.Tanh::setTanhDiffIndices(2 * maxOrder_m + 1);
247
248 fringeField_r.Tanh::setLambda(lambda_r);
249 fringeField_r.Tanh::setX0(s0);
250 fringeField_r.Tanh::setTanhDiffIndices(2 * maxOrder_m + 1);
251
252 return true;
253}
254
259 double Bz = 0.0;
260 if (angle_m == 0.0) {
261 // Straight geometry -> Use corresponding field expansion directly
262 for(std::size_t n = 0; n <= maxOrder_m; n++) {
263 double f_n = 0.0;
264 for(std::size_t i = 0; i <= n; i++) {
265 f_n += gsl_sf_choose(n, i) * getTransDeriv(2 * i, R[0]) *
266 getFringeDeriv(2 * n - 2 * i, R[2]);
267 }
268 f_n *= gsl_sf_pow_int(-1.0, n);
269 Bz += gsl_sf_pow_int(R[1], 2 * n) / gsl_sf_fact(2 * n) * f_n;
270 }
271 } else {
272 if (variableRadius_m == true and getFringeDeriv(0, R[2]) < 1.0e-12) {
273 // Return 0 if end of fringe field is reached
274 // This is to avoid functions being called at infinite radius
275 return 0.0;
276 }
277 // Curved geometry -> Use full machinery of differential operators
278 for(std::size_t n = 0; n <= maxOrder_m; n++) {
279 double f_n = getFn(n, R[0], R[2]);
280 Bz += gsl_sf_pow_int(R[1], 2 * n) / gsl_sf_fact(2 * n) * f_n;
281 }
282 }
283 return Bz;
284}
285
290 double Bx = 0.0;
291 if (angle_m == 0.0) {
292 // Straight geometry -> Use corresponding field expansion directly
293 for(std::size_t n = 0; n <= maxOrder_m; n++) {
294 double f_n = 0.0;
295 for(std::size_t i = 0; i <= n; i++) {
296 f_n += gsl_sf_choose(n, i) * getTransDeriv(2 * i + 1, R[0]) *
297 getFringeDeriv(2 * n - 2 * i, R[2]);
298 }
299 f_n *= gsl_sf_pow_int(-1.0, n);
300 Bx += gsl_sf_pow_int(R[1], 2 * n + 1) /
301 gsl_sf_fact(2 * n + 1) * f_n;
302 }
303 } else {
304 if (variableRadius_m == true and getFringeDeriv(0, R[2]) < 1.0e-12) {
305 // Return 0 if end of fringe field is reached
306 // This is to avoid functions being called at infinite radius
307 return 0.0;
308 }
309 // Curved geometry -> Use full machinery of differential operators
310 for(std::size_t n = 0; n <= maxOrder_m; n++) {
311 double partialX_fn = getFnDerivX(n, R[0], R[2]);
312 Bx += partialX_fn * gsl_sf_pow_int(R[1], 2 * n + 1)
313 / gsl_sf_fact(2 * n + 1);
314 }
315 }
316 return Bx;
317}
318
323 double Bs = 0.0;
324 if (angle_m == 0.0) {
325 // Straight geometry -> Use corresponding field expansion directly
326 for(std::size_t n = 0; n <= maxOrder_m; n++) {
327 double f_n = 0.0;
328 for(std::size_t i = 0; i <= n; i++) {
329 f_n += gsl_sf_choose(n, i) * getTransDeriv(2 * i, R[0]) *
330 getFringeDeriv(2 * n - 2 * i + 1, R[2]);
331 }
332 f_n *= gsl_sf_pow_int(-1.0, n);
333 Bs += gsl_sf_pow_int(R[1], 2 * n + 1) /
334 gsl_sf_fact(2 * n + 1) * f_n;
335 }
336 } else {
337 if (variableRadius_m == true and getFringeDeriv(0, R[2]) < 1.0e-12) {
338 // Return 0 if end of fringe field is reached
339 // This is to avoid functions being called at infinite radius
340 return 0.0;
341 }
342 // Curved geometry -> Use full machinery of differential operators
343 for(std::size_t n = 0; n <= maxOrder_m; n++) {
344 double partialS_fn = getFnDerivS(n, R[0], R[2]);
345 Bs += partialS_fn * gsl_sf_pow_int(R[1], 2 * n + 1)
346 / gsl_sf_fact(2 * n + 1);
347 }
348 Bs /= getScaleFactor(R[0], R[2]);
349 }
350 return Bs;
351}
352
353double MultipoleT::getFringeDeriv(int n, double s) {
354 if (n <= 10) {
356 / 2;
357 } else {
358 return tanhderiv::integrate(s,
359 fringeField_l.Tanh::getX0(),
360 fringeField_l.Tanh::getLambda(),
361 fringeField_r.Tanh::getLambda(),
362 n);
363 }
364}
365
366double MultipoleT::getTransDeriv(std::size_t n, double x) {
372 double func = 0;
373 std::vector<double> temp = transProfile_m;
374 if (n <= transMaxOrder_m) {
375 if (n != 0) {
376 for(std::size_t i = 1; i <= n; i++) {
377 for(std::size_t j = 0; j <= transMaxOrder_m; j++) {
378 if (j <= transMaxOrder_m - i) {
379 // Move terms to the left and multiply by power
380 temp[j] = temp[j + 1] * (j + 1);
381 } else {
382 // Put 0 at the end for missing higher powers
383 temp[j] = 0.0;
384 }
385 }
386 }
387 }
388 // Now use the vector to calculate value of the function
389 for(std::size_t k = 0; k <= transMaxOrder_m; k++) {
390 func += temp[k] * gsl_sf_pow_int(x, k);
391 }
392 }
393 return func;
394}
395
397 if (transMaxOrder_m < 1) {
398 transProfile_m.resize(1, 0.);
399 }
400 transProfile_m[0] = B0;
401}
402
404 visitor.visitMultipoleT(*this);
405}
406
407void MultipoleT::getDimensions(double &/*zBegin*/, double &/*zEnd*/) const {
408}
409
410void MultipoleT::setAperture(double vertAp, double horizAp) {
411 verticalApert_m = vertAp;
412 horizApert_m = horizAp;
413}
414
415std::vector<double> MultipoleT::getAperture() const {
416 std::vector<double> temp(2, 0.0);
417 temp[0] = verticalApert_m;
418 temp[1] = horizApert_m;
419 return temp;
420}
421
422std::vector<double> MultipoleT::getFringeLength() const {
423 std::vector<double> temp(2, 0.0);
424 temp[0] = fringeField_l.getLambda();
425 temp[1] = fringeField_r.getLambda();
426 return temp;
427}
428
429double MultipoleT::getRadius(double s) {
430 double centralRadius = length_m / angle_m;
431 if (!variableRadius_m) {
432 return centralRadius;
433 }
434 if (getFringeDeriv(0, s) != 0.0) {
435 return centralRadius * getFringeDeriv(0, 0) / getFringeDeriv(0, s);
436 } else {
437 return -1; // Return -1 if radius is infinite
438 }
439}
440
441double MultipoleT::getScaleFactor(double x, double s) {
442 if (!variableRadius_m) {
443 return 1 + x * angle_m/ length_m;
444 } else {
445 return 1 + x / getRadius(s);
446 }
447}
448
449double MultipoleT::getFnDerivX(std::size_t n, double x, double s) {
450 if (n == 0) {
451 return getTransDeriv(1, x) * getFringeDeriv(0, s);
452 }
453 double deriv = 0.0;
454 double stepSize = 1e-3;
455 deriv += 1. * getFn(n, x - 2. * stepSize, s);
456 deriv += -8. * getFn(n, x - stepSize, s);
457 deriv += 8. * getFn(n, x + stepSize, s);
458 deriv += -1. * getFn(n, x + 2. * stepSize, s);
459 deriv /= 12 * stepSize;
460 return deriv;
461}
462
463double MultipoleT::getFnDerivS(std::size_t n, double x, double s) {
464 if (n == 0) {
465 return getTransDeriv(0, x) * getFringeDeriv(1, s);
466 }
467 double deriv = 0.0;
468 double stepSize = 1e-3;
469 deriv += 1. * getFn(n, x, s - 2. * stepSize);
470 deriv += -8. * getFn(n, x, s - stepSize);
471 deriv += 8. * getFn(n, x, s + stepSize);
472 deriv += -1. * getFn(n, x, s + 2. * stepSize);
473 deriv /= 12 * stepSize;
474 return deriv;
475}
476
477double MultipoleT::getFn(std::size_t n, double x, double s) {
478 if (n == 0) {
479 return getTransDeriv(0, x) * getFringeDeriv(0, s);
480 }
481 if (!variableRadius_m) {
482 double rho = length_m / angle_m;
483 double func = 0.0;
484
485 for (std::size_t j = 0;
486 j <= recursion_ConstRadius_m.at(n).getMaxSDerivatives();
487 j++) {
488 double FringeDerivj = getFringeDeriv(2 * j, s);
489 for (std::size_t i = 0;
490 i <= recursion_ConstRadius_m.at(n).getMaxXDerivatives();
491 i++) {
492 if (recursion_ConstRadius_m.at(n).isPolynomialZero(i, j)) {
493 continue;
494 }
495 func += (recursion_ConstRadius_m.at(n)
496 .evaluatePolynomial(x / rho, i, j) *
497 getTransDeriv(i, x) * FringeDerivj) /
498 gsl_sf_pow_int(rho, 2 * n - i - 2 * j);
499 }
500 }
501 func *= gsl_sf_pow_int(-1.0, n);
502 return func;
503 } else {
504 double rho = length_m / angle_m;
505 double S_0 = getFringeDeriv(0, 0);
506 double y = getFringeDeriv(0, s) / (S_0 * rho);
507 double func = 0.0;
508 std::vector<double> fringeDerivatives;
509 for (std::size_t j = 0;
510 j <= recursion_VarRadius_m.at(n).getMaxSDerivatives();
511 j++) {
512 fringeDerivatives.push_back(getFringeDeriv(j, s) / (S_0 * rho));
513 }
514 for (std::size_t i = 0;
515 i <= recursion_VarRadius_m.at(n).getMaxXDerivatives();
516 i++) {
517 double temp = 0.0;
518 for (std::size_t j = 0;
519 j <= recursion_VarRadius_m.at(n).getMaxSDerivatives();
520 j++) {
521 temp += recursion_VarRadius_m.at(n)
522 .evaluatePolynomial(x, y, i, j, fringeDerivatives)
523 * fringeDerivatives.at(j);
524 }
525 func += temp * getTransDeriv(i, x);
526 }
527 func *= gsl_sf_pow_int(-1.0, n) * S_0 * rho;
528 return func;
529 }
530}
531
535}
536
538 double &/*startField*/,
539 double &/*endField*/) {
540 RefPartBunch_m = bunch;
541 initialise();
542}
543
544bool MultipoleT::bends() const {
545 return (transProfile_m[0] != 0);
546}
547
549 return planarArcGeometry_m;
550}
551
553 return planarArcGeometry_m;
554}
555
557 return dummy;
558}
559
561 return dummy;
562}
Tps< T > log(const Tps< T > &x)
Natural logarithm.
Definition: TpsMath.h:182
Tps< T > cos(const Tps< T > &x)
Cosine.
Definition: TpsMath.h:129
Tps< T > cosh(const Tps< T > &x)
Hyperbolic cosine.
Definition: TpsMath.h:222
Tps< T > tanh(const Tps< T > &x)
Hyperbolic tangent.
Definition: TpsMath.h:240
Tps< T > sin(const Tps< T > &x)
Sine.
Definition: TpsMath.h:111
#define X(arg)
Definition: fftpack.cpp:112
PETE_TUTree< FnArcTan, typename T::PETE_Expr_t > atan(const PETE_Expr< T > &l)
Definition: PETE.h:727
PETE_TUTree< FnAbs, typename T::PETE_Expr_t > abs(const PETE_Expr< T > &l)
const std::string name
double integrate(const double &a, const double &s0, const double &lambdaleft, const double &lambdaright, const int &n)
Definition: tanhDeriv.cpp:66
constexpr double alpha
The fine structure constant, no dimension.
Definition: Physics.h:72
constexpr double e
The value of.
Definition: Physics.h:39
ParticlePos_t & R
ParticleAttrib< Vector_t > P
virtual void visitMultipoleT(const MultipoleT &)=0
Apply the algorithm to an arbitrary multipole.
Interface for a single beam element.
Definition: Component.h:50
PartBunchBase< double, 3 > * RefPartBunch_m
Definition: Component.h:191
bool getFlagDeleteOnTransverseExit() const
Definition: ElementBase.h:613
double getNegTanh(double x, int n) const
Definition: Tanh.cpp:61
double getX0() const
Definition: Tanh.h:104
double getLambda() const
Definition: Tanh.h:101
double getTanh(double x, int n) const
Definition: Tanh.cpp:50
std::vector< double > transProfile_m
Definition: MultipoleT.h:265
void setDipoleConstant(double B0)
Definition: MultipoleT.cpp:396
std::size_t transMaxOrder_m
Definition: MultipoleT.h:263
double horizApert_m
Definition: MultipoleT.h:297
void setAperture(double vertAp, double horizAp)
Definition: MultipoleT.cpp:410
BMultipoleField dummy
Definition: MultipoleT.h:299
double getTransDeriv(std::size_t n, double x)
Definition: MultipoleT.cpp:366
double entranceAngle_m
Definition: MultipoleT.h:284
void setMaxOrder(std::size_t maxOrder)
Definition: MultipoleT.cpp:212
std::vector< polynomial::RecursionRelationTwo > recursion_VarRadius_m
Definition: MultipoleT.h:260
void initialise()
Definition: MultipoleT.cpp:532
endfieldmodel::Tanh fringeField_r
Definition: MultipoleT.h:252
endfieldmodel::Tanh fringeField_l
Definition: MultipoleT.h:251
ElementBase * clone() const override
Definition: MultipoleT.cpp:84
Vector_t rotateFrame(const Vector_t &R)
Definition: MultipoleT.cpp:140
EMField & getField() override
Definition: MultipoleT.cpp:556
double getScaleFactor(double x, double s)
Definition: MultipoleT.cpp:441
double getFnDerivX(std::size_t n, double x, double s)
Definition: MultipoleT.cpp:449
void accept(BeamlineVisitor &visitor) const override
Definition: MultipoleT.cpp:403
double verticalApert_m
Definition: MultipoleT.h:296
double rotation_m
Definition: MultipoleT.h:285
void getDimensions(double &zBegin, double &zEnd) const override
Definition: MultipoleT.cpp:407
double angle_m
Definition: MultipoleT.h:283
double getFnDerivS(std::size_t n, double x, double s)
Definition: MultipoleT.cpp:463
std::size_t maxOrderX_m
Definition: MultipoleT.h:258
double getRadius(double s)
Definition: MultipoleT.cpp:429
std::vector< polynomial::RecursionRelation > recursion_ConstRadius_m
Definition: MultipoleT.h:261
double getBx(const Vector_t &R)
Definition: MultipoleT.cpp:286
double length_m
Definition: MultipoleT.h:282
double getFn(std::size_t n, double x, double s)
Definition: MultipoleT.cpp:477
bool setFringeField(double s0, double lambda_left, double lambda_right)
Definition: MultipoleT.cpp:243
Vector_t transformCoords(const Vector_t &R)
Definition: MultipoleT.cpp:181
bool apply(const Vector_t &R, const Vector_t &P, const double &t, Vector_t &E, Vector_t &B) override
Definition: MultipoleT.cpp:94
void finalise() override
Definition: MultipoleT.cpp:90
double getFringeDeriv(int n, double s)
Definition: MultipoleT.cpp:353
bool insideAperture(const Vector_t &R)
Definition: MultipoleT.cpp:172
double getBz(const Vector_t &R)
Definition: MultipoleT.cpp:255
Vector_t rotateFrameInverse(Vector_t &B)
Definition: MultipoleT.cpp:160
PlanarArcGeometry planarArcGeometry_m
Definition: MultipoleT.h:267
bool bends() const override
Definition: MultipoleT.cpp:544
std::vector< double > getAperture() const
Definition: MultipoleT.cpp:415
void setTransProfile(std::size_t n, double Bn)
Definition: MultipoleT.cpp:235
std::size_t maxOrder_m
Definition: MultipoleT.h:256
bool variableRadius_m
Definition: MultipoleT.h:287
double boundingBoxLength_m
Definition: MultipoleT.h:289
MultipoleT(const std::string &name)
Definition: MultipoleT.cpp:40
PlanarArcGeometry & getGeometry() override
Definition: MultipoleT.cpp:548
void initialise(PartBunchBase< double, 3 > *, double &startField, double &endField) override
Definition: MultipoleT.cpp:537
double getBs(const Vector_t &R)
Definition: MultipoleT.cpp:319
std::vector< double > getFringeLength() const
Definition: MultipoleT.cpp:422
std::vector< double > getTransformation() const
void resizeX(const std::size_t &xDerivatives)
void truncate(std::size_t highestXorder)
void truncate(std::size_t highestXorder)
void resizeX(const std::size_t &xDerivatives)
A simple arc in the XZ plane.
void setCurvature(double)
Set curvature.
virtual void setElementLength(double)
Set length.
Abstract base class for electromagnetic fields.
Definition: EMField.h:188