OPAL (Object Oriented Parallel Accelerator Library) 2022.1
OPAL
PolynomialSum.cpp
Go to the documentation of this file.
1/*
2 * Copyright (c) 2018, Martin Duy Tat
3 * All rights reserved.
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
6 * 1. Redistributions of source code must retain the above copyright notice,
7 * this list of conditions and the following disclaimer.
8 * 2. Redistributions in binary form must reproduce the above copyright notice,
9 * this list of conditions and the following disclaimer in the documentation
10 * and/or other materials provided with the distribution.
11 * 3. Neither the name of STFC nor the names of its contributors may be used to
12 * endorse or promote products derived from this software without specific
13 * prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28#include <iostream>
29#include <algorithm>
30#include <gsl/gsl_sf_pow_int.h>
31#include "PolynomialSum.h"
32#include "TwoPolynomial.h"
33
34namespace polynomial {
35
37}
38
40 polynomialSum_m.push_back(polynomial);
41}
42
44 polynomialSum_m(polynomialSum.polynomialSum_m) {
45}
46
48}
49
51 polynomialSum_m = sum.polynomialSum_m;
52 return *this;
53}
54
56 for (std::size_t i = 0; i < polynomialSum_m.size(); i++) {
57 polynomialSum_m[i].differentiateX();
58 }
59}
60
62 std::size_t pSize = polynomialSum_m.size();
63 for (std::size_t i = 0; i < pSize; i++) {
64 std::size_t N = polynomialSum_m[i].getNdSfactors();
65 for (std::size_t j = 0; j < N; j++) {
66 std::vector<std::size_t> tempdS =
67 polynomialSum_m[i].getdSfactors();
68 if (tempdS[j] != 0) {
69 polynomialSum_m.push_back(polynomialSum_m[i]);
70 polynomialSum_m.back().multiplyConstant(tempdS[j]);
71 tempdS[j] = tempdS[j] - 1;
72 if ((j + 1) == N) tempdS.push_back(0);
73 tempdS[j + 1] = tempdS[j + 1] + 1;
74 polynomialSum_m.back().setdSfactors(tempdS);
75 }
76 }
77 polynomialSum_m[i].differentiateS();
78 }
79}
80
81void PolynomialSum::multiplyPolynomial(const TwoPolynomial &poly) {
82 for (std::size_t i = 0; i < polynomialSum_m.size(); i++) {
83 polynomialSum_m[i].multiplyPolynomial(poly);
84 }
85}
86
88 for (std::size_t i = 0; i < polynomialSum_m.size(); i++) {
89 if (!polynomialSum_m[i].isZero()) {
90 std::cout << " + ";
91 polynomialSum_m[i].printPolynomial();
92 }
93 }
94}
95
96bool PolynomialSum::isPolynomialZero(const std::size_t &p) const {
97 if (p < polynomialSum_m.size()) {
98 return polynomialSum_m[p].isZero();
99 }
100 else {
101 return true;
102 }
103}
104
105void PolynomialSum::truncate(const std::size_t &truncateOrder) {
106 for (std::size_t i = 0; i < polynomialSum_m.size(); i++) {
107 polynomialSum_m[i].truncate(truncateOrder);
108 }
109}
110
112 std::vector<TwoPolynomial> newPoly;
113 newPoly.reserve(polynomialSum_m.size() + poly.polynomialSum_m.size());
114 newPoly.insert(newPoly.end(),
115 polynomialSum_m.begin(),
116 polynomialSum_m.end());
117 newPoly.insert(newPoly.end(),
118 poly.polynomialSum_m.begin(),
119 poly.polynomialSum_m.end());
120 polynomialSum_m = newPoly;
121}
122
123std::vector<std::size_t> PolynomialSum::getdSfactors(
124 const std::size_t &p) const {
125 if (p >= polynomialSum_m.size()) {
126 std::vector<std::size_t> dummy;
127 return dummy;
128 }
129 return polynomialSum_m[p].getdSfactors();
130}
131
133 std::size_t N = polynomialSum_m.size();
134 if (N < 2) {
135 return;
136 }
137 std::sort(polynomialSum_m.begin(), polynomialSum_m.end());
138 while (polynomialSum_m[0].isZero()) {
139 polynomialSum_m.erase(polynomialSum_m.begin());
140 if (polynomialSum_m.size() < 2) {
141 return;
142 }
143 }
144 std::size_t i = 1;
145 while (i < polynomialSum_m.size()) {
146 if (polynomialSum_m[i].isZero()) {
147 polynomialSum_m.erase(polynomialSum_m.begin() + i);
148 continue;
149 }
150 if (polynomialSum_m[i - 1] == polynomialSum_m[i]) {
151 polynomialSum_m[i - 1].addPolynomial(polynomialSum_m[i]);
152 polynomialSum_m.erase(polynomialSum_m.begin() + i);
153 } else {
154 i++;
155 }
156 }
157}
158
160 const std::vector<double> &dSvalues,
161 std::vector<std::vector<double>> &finalPolynomial) const {
162 finalPolynomial.resize(1);
163 finalPolynomial[0].resize(1, 0.0);
164 std::size_t nx = 0, ns = 0;
165 for (std::size_t p = 0; p < polynomialSum_m.size(); p++) {
166 if (polynomialSum_m[p].isZero()) {
167 continue;
168 }
169 double dSfactoreval = 1.0;
170 for (std::size_t q = 0;
171 q < polynomialSum_m[p].dSfactors_m.size();
172 q++) {
173 dSfactoreval *= gsl_sf_pow_int(dSvalues[q + 1],
174 polynomialSum_m[p].dSfactors_m[q]);
175 }
176 if (nx < polynomialSum_m[p].maxXorder_m) {
177 finalPolynomial.resize(polynomialSum_m[p].maxXorder_m + 1);
178 for (std::size_t k = nx + 1;
179 k <= polynomialSum_m[p].maxXorder_m;
180 k++) {
181 finalPolynomial[nx].resize(ns + 1, 0.0);
182 }
183 nx = polynomialSum_m[p].maxXorder_m;
184 }
185 if (ns < polynomialSum_m[p].maxSorder_m) {
186 ns = polynomialSum_m[p].maxSorder_m;
187 for (std::size_t k = 0; k <= nx; k++) {
188 finalPolynomial[k].resize(ns + 1, 0.0);
189 }
190 }
191 for (std::size_t i = 0;
192 i <= polynomialSum_m[p].maxXorder_m;
193 i++) {
194 for (std::size_t j = 0;
195 j <= polynomialSum_m[p].maxSorder_m;
196 j++) {
197 finalPolynomial[i][j] += polynomialSum_m[p]
198 .coefficients_m[i][j]
199 * dSfactoreval;
200 }
201 }
202 }
203}
204
206 const double &x,
207 const double &s,
208 const std::vector<double> &dSvalues) const {
209 std::vector<std::vector<double>> coefficients;
210 putSumTogether(dSvalues, coefficients);
211 double result = 0.0;
212 std::size_t i = coefficients.size();
213 while (i != 0) {
214 i--;
215 std::size_t j = coefficients[0].size();
216 double temp = 0.0;
217 while (j != 0) {
218 j--;
219 temp = temp * s + coefficients[i][j];
220 }
221 result = result * x + temp;
222 }
223 return result;
224}
225
226}
T::PETE_Expr_t::PETE_Return_t sum(const PETE_Expr< T > &expr)
Definition: PETE.h:1111
bool isPolynomialZero(const std::size_t &p) const
void addPolynomial(const PolynomialSum &poly)
void putSumTogether(const std::vector< double > &dSvalues, std::vector< std::vector< double > > &finalPolynomial) const
void truncate(const std::size_t &truncateOrder)
PolynomialSum & operator=(const PolynomialSum &sum)
void multiplyPolynomial(const TwoPolynomial &poly)
std::vector< TwoPolynomial > polynomialSum_m
std::vector< std::size_t > getdSfactors(const std::size_t &p) const
double evaluatePolynomial2(const double &x, const double &s, const std::vector< double > &dSvalues) const