
V1.0
Draf

t

PSI-PR-09-05

The IP2L Framework
(Independent Parallel Particle Layer)

Version 1.0 1

User’s Reference Manual

Andreas Adelmann, Yves Ineichen

Abstract

IP2L (Independent Parallel Particle Layer) is an object-oriented
framework for particle based applications in computational science
requiring high-performance parallel computers. One of IP2L ’s most
attractive features is its high performance on both single-processor
and distributed-memory multicomputers machines. As future releases
of the library will also support shared-memory multicomputers, IP2L
’s authors have had to think very carefully about how to obtain the
best possible performance across a wide range of applications on dif-
ferent architectures. IP2L is a library of C++ classes designed to
represent common abstractions in applications where particles, fields
and operators like FFT’s are needed.

Application programmers use and derive from these classes, which
present a data-parallel programming interface at the highest abstrac-
tion layer.

Lower, to the user (programmer) hidden implementation layers
encapsulate distribution and communication of data among proces-
sors. The supported platforms are: Linux based Beowulf clusters,
Cray XT5/6, SGI Ultrix and the IBM Blue Gene series.

The main goals of the IP2L framework includes:
1Release Date: July 3, 2012

V1.0
Draf

t

• Portability across serial, distributed, and parallel architectures
with no change to source code

• Development of reusable, cross-problem-domain components to
enable rapid application development

• High efficiency for kernels and components relevant to scientific
simulation

• Framework design and development driven by applications from
a diverse set of scientific problem domains

• Shorter time from problem inception to working parallel simu-
lations

IP2L is currently in development the version here is the first ”devel-
oper release”. IP2L is inspired and partially based on POOMA r1
designed and implemented by scientists working at the Los Alamos
National Laboratory’s Advanced Computing Laboratory.

The report is organized as follow: in chapter 1 an introduction
based on examples including installation instructions is presented.
Chapter 2 and 3 are describing support classes followed by an discus-
sion on 3D parallel FFT’s in IP2L . The next two chapters explaining
the use of particles and fields. Appendix A - F describing design and
implementation details of the most important classes in the frame-
work.

2

V1.0
Draf

t

Contents

1 Introduction 7
1.1 Example 1 Laplace solver using Jacobi iteration 7
1.2 Example 2 Power Spectrum . 8
1.3 Example 3 Particle in Cell Code (PIC) 9

1.3.1 The ChargedParticles Class 10
1.3.2 The main . 10
1.3.3 initFields . 12
1.3.4 myUpdate . 12
1.3.5 gather . 13

1.4 Example 4 A Particle Particle - Particle Mesh (P3M) Solver 13
1.5 Installation . 16

1.5.1 Building IP2L . 16
1.5.2 Used Compilers and Libraries 16

1.6 Acknowledgements . 18
1.6.1 Citation . 18

2 Framework Setup 19
2.1 Initialising IP2L . 19
2.2 Utility Classes in IP2L . 19

2.2.1 Inform Class . 19
2.2.2 Timer Class . 21
2.2.3 Memory Footprint Class 22

3 FFT 23
3.0.1 Improving FFT Performance 25

4 Particles 27
4.1 Basic Particle Object Characteristics 27
4.2 Defining a User-Specified Particle Class 28

4.2.1 Selecting a Layout: ParticleLayout and Derived Classes 29
4.2.2 The ParticleUniformLayout Class 29

1

V1.0
Draf

t

4.2.3 The ParticleSpatialLayout Class 29
4.2.4 Selecting Particle Attributes: The ParticleAttrib

Class . 31
4.2.5 Specifying a User-Defined Particle Class:

The ParticleBase Class 31
4.2.6 Example Particle Classes: The Genparticle and

GenArrayParticle Classes 34
4.2.7 Using Particle Classes in an Application 35
4.2.8 Creating New Particles 35
4.2.9 Initializing Attribute Data 36
4.2.10 Initializing Attribute Data on Parallel Architectures 36
4.2.11 Deleting Particles 37
4.2.12 Updating Particles: The update() Method 37
4.2.13 Using Particle Attributes in Expressions 38
4.2.14 Particle Iterator Loop 39

4.3 Nearest-Neighbor Interactions (Jakob) 39
4.3.1 Particle - Particle Interactions 39
4.3.2 Particle - Field Interactions 40

5 Using the Field and Related Classes 42
5.1 Field Object Instantiation . 42

5.1.1 Field Template Parameters 42
5.1.2 Invoking the Field Constructor 43

5.2 The Index Class . 44
5.3 The NDIndex Class . 46
5.4 The FieldLayout Class . 46

5.4.1 Specifying Serial or Parallel Layout 46
5.5 Boundary Condition Classes . 47

5.5.1 Available Boundary Conditions 48
5.5.2 Using Boundary Conditions With Fields 48
5.5.3 Default Boundary Condition 49

5.6 The GuardCellSizes Class 49
5.7 Operations on Field Objects 50

5.7.1 Assignment . 50
5.7.2 Using Index Objects with Field’s 51
5.7.3 Overloaded operators . 56
5.7.4 The where() Function 57
5.7.5 Mathematical Functions on Field’s 58
5.7.6 Reduction Operations . 59

2

V1.0
Draf

t

A Fields 61
A.1 Field Class Definition . 61
A.2 Field Constructors . 62
A.3 Field Member Functions and Member Data 62
A.4 Operations on Field Objects . 62

A.4.1 Assignment . 62
A.4.2 Boundary Conditions . 63

B Index Class 67
B.1 Index Definition . 67
B.2 Index Constructors . 69
B.3 Index Member Functions and Member Data 70

B.3.1 Index iterator . 70
B.3.2 Index Query/Accessor Functions 70
B.3.3 Index Arithmetic operator Functions 71
B.3.4 Index I/O and Message-Passing Functions 72
B.3.5 Index Comparison Operators 72
B.3.6 Index Composition Functions 72

C FieldLayout Class 74
C.1 FieldLayout Definition (Public Interface) 74
C.2 FieldLayout Constructors . 77

C.2.1 Specifying Serial or Parallel Layout 78
C.3 FieldLayout Member Functions and Member Data 78

C.3.1 Access Functions to Containers in FieldLayout 78

D CenteredFieldLayout Class 80
D.1 CenteredFieldLayout Definition (Public Interface) 80
D.2 CenteredFieldLayout Constructors 81

E Meshes 82
E.1 Mesh Class . 82

E.1.1 Mesh Definition (Public Interface) 82
E.2 UniformCartesian Class 82

E.2.1 UniformCartesian Definition (Public Interface) . . . 83
E.2.2 UniformCartesian Constructors 85
E.2.3 UniformCartesian Member Functions and Member

Data . 86
E.2.4 UniformCartesian Set/Accessor Functions for Mem-

ber Data . 87
E.2.5 Other UniformCartesian Methods 88

3

V1.0
Draf

t

E.3 Cartesian Class . 90
E.3.1 Cartesian Definition (Public Interface) 91
E.3.2 Cartesian Constructors 93
E.3.3 Cartesian Member Functions and Member Data 94

F Centering 96
F.1 Cell Class . 96

F.1.1 Cell Constructors . 97
F.1.2 Cell Member Functions and Member Data 97

F.2 Vert Class . 97
F.2.1 Vert Constructors . 98
F.2.2 Vert Member Functions and Member Data 98

F.3 CommonCartesianCenterings Class 98
F.3.1 CommonCartesianCenteringsDefinition (Public In-

terface) . 99
F.3.2 CommonCartesianCenterings Constructors 100
F.3.3 CommonCartesianCenterings Member Data . . . 100

F.4 CartesianCentering Class 101
F.4.1 CartesianCenteringDefinition(Public Interface) 101
F.4.2 CartesianCentering Constructors 101
F.4.3 CartesianCentering Member Functions and Mem-

ber Data . 101

4

V1.0
Draf

t

List of Tables

1.1 Supported Architectures and needed Libraries 17

5

V1.0
Draf

t

List of Figures

1.1 Decomposition of the Green function. 14
1.2 Error and time scaling of the P 3M solver for different interaction

radii. Measured fo a uniform spherical distribution of 104 particles
on 4 processors. 15

6

V1.0
Draf

t

Chapter 1

Introduction

One of IP2L ’s most attractive features is its high performance on both single-
processor and distributed-memory multiprocessor machines. As future releases
of the library will also support shared-memory machines.

The heart of the problem IP2L ’s authors face is that while data-parallel pro-
gramming is a natural way to express many scientific and numerical algorithms,
straightforward implementations of it do exactly the wrong thing on modern ar-
chitectures, whose performance depends critically on the re-use of data loaded
into cache. If a program evaluates A+B+C for three arrays A, B, and C by adding
A to B, then adding C to that calculation’s result, performance suffers both be-
cause of the overhead of executing two loops instead of one, but also (and more
importantly) because every value in the temporary array that stores the result of
A+B has to be accessed twice: once to write it, and once to read it back in. As
soon as this array is too large to fit into cache, the program’s performance will
drop dramatically.

1.1 Example 1 Laplace solver using Jacobi iteration
Code Listing
#include "Ippl.h"
int main(int argc, char *argv[])
{

Ippl ippl(argc,argv);
Inform msg(argv[0]);
const unsigned N=8;
const unsigned Dim=2;

Index IGLOBAL(N); // Specify the global domain
Index JGLOBAL(N);

Index I(1, N-1); // Specify the interior domain
Index J(1, N-1);
FieldLayout<Dim> layout(IGLOBAL,JGLOBAL);

7

V1.0
Draf

t

GuardCellSizes<Dim> gc(1);
typedef UniformCartesian<Dim> Mesh;
Field<double,Dim,Mesh> A(layout,gc);
Field<double,Dim,Mesh> b(layout,gc);

assign(A,0.0); // Assign initial conditions
assign(b,0.0);

b[N/2][N/2] = -1.0; // put a spike on the RHS
double fact = 0.25;

// Iterate 200 times
for (int i=0; i<200; ++i) {

assign(A[I][J],fact*(A[I+1][J] +
A[I-1][J] +
A[I][J+1] +
A[I][J-1] - b[I][J]));

}
msg << A << endl;
return 0;

}

The syntax is very similar to that of Fortran 90: a single assignment fills an entire
array with a scalar value, subscripts express ranges as well as single points, and
so on. In fact, the combination of C++ and IP2L provides so many of the features
of Fortran 90 that one might well ask whether it wouldn’t better to just use the
latter language straight up. One answer comes down to economics. While the
various flavors of Fortran are still used in scientific computing, Fortran’s user base
is shrinking, particularly in comparison to C++. Networking, graphics, database
access, and operating system interfaces are available in C++ programmers long
before they’re available in Fortran (if they become available at all). What’s more,
support tools such as debuggers and memory inspectors are primarily targeted at
C++ developers, as are hundreds of books, journal articles, and web sites.

Another answer is that the abstraction facilities of C++ are much more pow-
erful that those in Fortran. While Fortran 90 supports an attractive array syntax
for floating point arrays one could not, for example, efficiently extend this high
level syntax to arrays of vectors or tensors. Until recently, Fortran has had two
powerful arguments in its favor: legacy applications, and performance. However,
the importance of the former is diminishing as the invention of new algorithms
force programmers to rewrite old codes, while the invention of techniques such as
expression templates has made it possible for C++ programs to match, or exceed,
the performance of highly-optimized Fortran 77.

1.2 Example 2 Power Spectrum
A sinussoidal field ρ(i, j, k) = a1sin(k1

2π
nx
i) + a5sin(k5

2π
nx
i), i = 1 . . . nx, j =

1 . . . ny, k = 1 . . . nz with nx, ny and nz denoting the grid size is generated and the

8

V1.0
Draf

t

power spectrum calculated. This examples shows how to initialise fields, compute
discrete complex-complex FFT and compute the resulting powerspectrum.

Assume a real density field is defined like
typedef Field<double,Dim,Mesh_t,Center_t> Field_t;
Field_t rho;

we then can immediately initialize the field according to the above formula
assign(rho[I][J][K], a1*sin(2.0*pi/nr_m[0]*k1*I) +

a5*sin(2.0*pi/nr_m[0]*k5*I));

Normalizing to max(ρ) ≤ 1.0 with
rho /= max(rho)

we then assume to have defined a complex field ”fC” and a complex-complex
FFT.
fC = rho;
fft->transform("forward" , fC);

Here we used the in place version of the FFT to obtain ρ in Fourier space. Now
we can compute the power spectrum:
pwrSpec = real(fC*conj(fC));

and calculate the 1D pwr-spectrum (in x direction) by integrating over y and z:
Code Listing
NDIndex<3> elem;
for (int i=lDomain[0].min(); i<=(lDomain[0].max()-1)/2; ++i) {
elem[0]=Index(i,i);
for (int j=lDomain[1].min(); j<=(lDomain[1].max()-1)/2; ++j) {
elem[1]=Index(j,j);
for (int k=lDomain[2].min(); k<=(lDomain[2].max()-1)/2; ++k) {
elem[2]=Index(k,k);
f1D[i] += pwrSpec.localElement(elem);

}
}

}

The power spectra of the local domain is stored in f1. We have to update all other
node so that each node has the full power spectrum by:
reduce(&(f1[0]),&(f1[0])+f1_lenght,OpAddAssign());

assuming the non local part of f1 is initialized with zero.

1.3 Example 3 Particle in Cell Code (PIC)
This example discusses how to write a 3D Particle in Cell Code (PIC). The com-
plete source file can be found at $IPPL ROOT/test/particles. The this presentation
details are omitted, only the structure and important issues are highlighted.

9

V1.0
Draf

t

1.3.1 The ChargedParticles Class
The base class ParticleBase is augmented with attributes such as charge to
mass ration qm, the vector momenta P and the vector holding the electric field E.
Code Listing
ChargedParticles(PL* pl, Vector_t hr, Vector_t rmin,

Vector_t rmax, e_dim_tag decomp[Dim]) :
ParticleBase<PL>(pl),
hr_m(hr),
rmin_m(rmin),
rmax_m(rmax),
fieldNotInitialized_m(true)

{
this->addAttribute(qm);
this->addAttribute(P);
this->addAttribute(E);

for (int i=0; i < 2*Dim; i++) {
this->getBConds()[i] = ParticlePeriodicBCond;
bc_m[i] = new PeriodicFace<double ,Dim,Mesh_t,Center_t>(i);
vbc_m[i] = new PeriodicFace<Vector_t,Dim,Mesh_t,Center_t>(i);

}
for(int i=0; i<Dim; i++)

decomp_m[i]=decomp[i];
}

The arrays bc m and vbc m holding the boundary conditions for particles and
fields. In decomp m the domain decomposition is stored.

1.3.2 The main
Code Listing
int main(int argc, char *argv[]) {

Ippl ippl(argc, argv);
Inform msg(argv[0]);

Vektor<int,Dim> nr(atoi(argv[1]),atoi(argv[2]),atoi(argv[3]));

const unsigned int totalP = atoi(argv[4]);
const int nt = atoi(argv[5]);

e_dim_tag decomp[Dim];
int serialDim = 2;

Mesh_t *mesh;
FieldLayout_t *FL;
ChargedParticles<playout_t> *partBunch;

NDIndex<Dim> domain;
for(int d=0; d<Dim; d++) {

domain[d] = domain[d] = Index(nr[d] + 1);
decomp[d] = (d == serialDim) ? SERIAL : PARALLEL;

}

In the fist part of main, the discrete computational domain (domain) and the
domain decomposition (decomp) is constructed. We have choose a 2D domain

10

V1.0
Draf

t

decomposition with z serial i.e. not parallelized.
Code Listing

mesh = new Mesh_t(domain);
FL = new FieldLayout_t(*mesh, decomp);
playout_t* PL = new playout_t(*FL, *mesh);

Vector_t hr(1.0);
Vector_t rmin(0.0);
Vector_t rmax(nr);

partBunch=new ChargedParticles<playout_t>(PL,hr,rmin,rmax,decomp);

Here we construct the mesh the field layout (FL), describing how the fields are
distributed and finally the particle layout PL. The latter is the used as a template
argument to construct the particle container. For this example the mesh size is set
to unity and the computational domain is the given by the number of mesh points
defined in nr.
Code Listing

unsigned long int nloc = totalP / Ippl::getNodes();

partBunch->create(nloc);
for (unsigned long int i = 0; i< nloc; i++) {

for (int d = 0; d<Dim; d++)
partBunch->R[i](d) = IpplRandom() * nr[d];

}

partBunch->qm = 1.0/totalP;
partBunch->myUpdate();
partBunch->initFields();

Now each node created nloc particles and initialized the coordinates randomly
in the computational domain. A fixed charge to mass ration is assigned. The
myUpdate() moves all particles to their node defined by the domain decompo-
sition and initialized the fields. In the last call the fields gets initialized with the
sinusoidal electric field.

11

V1.0
Draf

t

Code Listing
for (unsigned int it=0; it<nt; it++) {

partBunch->R = partBunch->R + dt * partBunch->P;
partBunch->myUpdate();
partBunch->gather();
partBunch->P += dt * partBunch->qm * partBunch->E;

}
return 0;

}

The last part of main consists of a simple integration scheme to advance the parti-
cles. The call gather interpolates the electric field at the particle position form
the nearby grid points by a second order cloud in cell (CIC) interpolation scheme.

1.3.3 initFields
Code Listing
void initFields() {

NDIndex<Dim> domain = getFieldLayout().getDomain();

for(int i=0; i<Dim; i++)
nr_m[i] = domain[i].length();

int nx = nr_m[0]; int ny = nr_m[1]; int nz = nr_m[2];

double phi0 = 0.1*nx;

Index I(nx), J(ny), K(nz);

assign(EFD_m[I][J][K](0),
-2.0*pi*phi0/nx *
cos(2.0*pi*(I+0.5)/nx) *
cos(4.0*pi*(J+0.5)/ny) * cos(pi*(K+0.5)/nz));

assign(EFD_m[I][J][K](1), ;

assign(EFD_m[I][J][K](2), ;

assign(EFDMag_m[I][J][K],
EFD_m[I][J][K](0) * EFD_m[I][J][K](0) +
EFD_m[I][J][K](1) * EFD_m[I][J][K](1) +
EFD_m[I][J][K](2) * EFD_m[I][J][K](2));

}

1.3.4 myUpdate
Code Listing
void myUpdate() {

if(fieldNotInitialized_m) {
fieldNotInitialized_m=false;
getMesh().set_meshSpacing(&(hr_m[0]));

12

V1.0
Draf

t

getMesh().set_origin(rmin_m);
EFD_m.initialize(getMesh(), getFieldLayout(), GuardCellSizes<Dim>(1), vbc_m);
EFDMag_m.initialize(getMesh(), getFieldLayout(), GuardCellSizes<Dim>(1), bc_m);

}
this->update();

}

1.3.5 gather
Code Listing
void gather() {

IntCIC myinterp;
E.gather(EFD_m, this->R, myinterp);

}

1.4 Example 4 A Particle Particle - Particle Mesh
(P3M) Solver

Particle Particle - Particle Mesh solvers take the close range interaction of parti-
cles into account by combining a mesh solver as seen in the previous section with
a quadratic Particle Particle computation for particles that are closer than a given
interaction radius ri (see http://en.wikipedia.org/wiki/P3M, http:
//arxiv.org/abs/astro-ph/9805096 and http://arxiv.org/abs/
astro-ph/0512030). To be able to combine these two solutions the Greens
functions of the PIC solver and the particle-particle interaction have to be modi-
fied such that they add up to the desired Green function:

G(x) = Gpp(x) +Gmesh(x). (1.1)

In case of the Green function G(x) = 1
||x||2 this can be achieved by setting

Gmesh(x) =

G(x), if ||x|| > ri

−3||x||2
r4i

+ 4||x||
r3i
, else

(1.2)

and
Gpp(x) = G(x)−Gmesh(x) (1.3)

see also Figure 1.1.

13

V1.0
Draf

t
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2

V
al

ue
 in

 a
rb

itr
ar

y
un

its

Radius [ri]

G(x)
Gpp(x)

Gmesh(x)

Figure 1.1: Decomposition of the Green function.

Therefore the Green function from the PIC example has to be replaced by the
following modified Green function:

Code Listing
template<>
struct SpecializedGreensFunction<3> {

template<class T, class FT, class FT2>
//...

template<class T, class FT, class FT2>
static void calculate(Vektor<T, 3> &hrsq, FT &grn, FT2 *grnI, double R) {

grn = grnI[0] * hrsq[0] + grnI[1] * hrsq[1] + grnI[2] * hrsq[2];
grn = where(lt(R*R, grn), 1./sqrt(grn),

((grn*sqrt(grn))/R-2*grn)/(R*R*R) + 2/R);
grn[0][0][0] = grn[0][0][1];

}
};

The short range interaction is handled by IPPL’s pairbuilding mechanism which
applies the Green function to each pair of particles whose distance is below the
interaction radius (see 4.3.1). For this purpose ChargedParticles contains

14

V1.0
Draf

t
 2e-06

 3e-06

 4e-06

 5e-06

 6e-06

 7e-06

 8e-06

 0 2 4 6 8 10

 1

 5

 25

 125

E
rr

or
 =

 (
Σ

(x
an

al
yt

ic
al

-x
)2)0.

5 /n

T
im

e
[s

]

Interaction Radius

Asymptotic Error

error
time

Figure 1.2: Error and time scaling of the P 3M solver for different interaction
radii. Measured fo a uniform spherical distribution of 104 particles on 4 proces-
sors.

the following member function:

Code Listing
void calculatePairForces(double interaction_radius)
{

HashPairBuilder< ChargedParticles<playout_t> > HPB(*this);
//apply the field to each pair, the -1 is the field constant
HPB.for_each(RadiusCondition<double, Dim>(interaction_radius),

ApplyField<double>(-1,interaction_radius));
}

Which calls ApplyField for each pair of particles that fulfills the condition
||x1 − x2|| = ||x|| < ri.

15

V1.0
Draf

t

Code Listing
template<class T>
struct ApplyField {

ApplyField(T c, double r) : C(c), R(r) {}
void operator()(std::size_t i, std::size_t j, ChargedParticles<playout_t> &P) const
{

const Vector_t diff = P.R[i] - P.R[j];
double sqr = 0;
for(int d = 0;d<Dim;++d)
sqr += diff[d]*diff[d];

if(sqr!=0)
{
double r = std::sqrt(sqr);

Vector_t Fij = C*(diff/r)*(1/sqr - (-3/(R*R*R*R)*r*r + 4/(R*R*R)*r));

P.EF[i] -= P.Q[j]*Fij;
P.EF[j] += P.Q[i]*Fij;

}
}
T C;
double R;

};

1.5 Installation
IP2L uses the cmake build philosophy. The following UNIX environment vari-
ables must be set

IPPL_ROOT

defining where the IP2L source is installed, and

IPPL_PREFIX

where you install the library.

1.5.1 Building IP2L
cd $IPPL_PREFIX
CXX=mpicxx F77=gfortran cmake -DCMAKE_VERBOSE_MAKEFILE=OFF
-DCMAKE_INSTALL_PREFIX= $IPPL_PREFIX $IPPL_ROOT
make install

1.5.2 Used Compilers and Libraries
The supported operating systems and libraries are listed in Table 1.1.

16

V1.0
Draf

tTable 1.1: Supported Architectures and needed Libraries

Operating System HDF5 H5hut Compiler Open MPI

Linux (SL) 2.6.18 hdf5-1.8.8 V 0.99 GNU 4.6.3, icc12.x 1.4.2

Cray XTx hdf5-1.8.8 V 0.99 GNU 4.6.3 -

IBM BG/P&Q hdf5-1.8.8 V 0.99 GNU 4.6.3 -

17

V1.0
Draf

t

1.6 Acknowledgements
The contributions of various individuals and groups are acknowledged in the rel-
evant chapters, however a few individuals have or had considerable influence on
the development, Julian Cummings, Yves Ineichen and Jakob Progsch. Misprints
and obscurity are almost inevitable in a document of this size. Comments and
active contributions from readers are therefore most welcome. They may also be
sent to andreas.adelmann@psi.ch.

1.6.1 Citation
Please cite IP2L in the following way:

@techreport{ippl-User-Guide,
title = "{The IPPL (Independent Parallel Particle Layer)

Framework }",
author = "A. Adelmann",
institution = "Paul Scherrer Institut",
number = "PSI-PR-09-05",
year = 2009}

18

V1.0
Draf

t

Chapter 2

Framework Setup

2.1 Initialising IP2L
IP2L is initialized by passing argc and argv to Ippl() constructor or by cre-
ating an instance of Ippl::Options, configuring it, and then passing that op-
tions object to Ippl::initialize(). After the Ippl() constructor call
MPI (or any other parallel subsystem) is proper initialized.
With Ippl::getNodes() or Ippl::myNode() you can for example gather
information how many compute nodes/cores are available and on which of the
nodes you are running.
Code Listing
#include "Ippl.h"
int main(int argc, char *argv[])
{

Ippl ippl(argc,argv);
.....

2.2 Utility Classes in IP2L
IP2L provides, and uses internally, a number of useful utility classes which you
may find helpful when developing new applications.

2.2.1 Inform Class
The Inform class is used to print messages to the console or to a file. It has
an interface which is very similar to the iostream classes in C++, and it is mostly
used in those situation where you might print a message to cout or cerr. An Inform
object is created with a prefix string, which is then appended to all lines of output
from the Inform object. Inform essentially takes in data to be printed, formats it

19

V1.0
Draf

t

for printing just as an ostream object would, but also appends the prefix message
to all lines of output. Most important Inform will also indicate which node printed
the message when running in parallel.

Constructing New Inform Objects

The constructor for Inform has the form
Inform(char *prefix = 0, int node = 0)

where prefix is a string to prepend to all output lines, and node indicates on what
node the Inform object should actually print out the information it is given. Notice
that both of these arguments have default values; if no arguments are used when
creating a new Inform object, no prefix will be used, if only one argument is
given, then node default to 0, which means this Inform object will only print out
messages on node 0.
Inform blankmsg;
blankmsg << "Some text." << endl;

This Inform object will print the text it is given to standard out. The final ”endl”
is a special manipulator object, which signals the Inform objec t to print out the
message it has been given. It will automatically append an endline to the message
if it does not already have one at the end. It is important to use endl with an Inform
object if it is not ever used, the Inform object will never print out its accumulated
text.
Inform testmsg("mytest");
testmsg << "More text. argc = " << argc << endl;

Here, the prefix is given, if this is used when running in serial, the output will look
like:
mytest> More text. argc = 1

or, if you use this when there is more than one processor in use, the prefix will
also include the node number in curly brackets:
mytest{0}> More text. argc = 1

On all other nodes than node 0, when this Inform object is used, it will not print
out the message.
Inform testmsg("testall", INFORM_ALL_NODES);

This example is similar to the previous example, except the second argument ex-
plicitly specifies which node to print on. This can be a number from 0 (num
nodes - 1), or, as in this example, it can be INFORM ALL NODES which indicates
the message should be printed on ALL the nodes instead of just one. You can also
change the node on which an Inform object will print after it has been created by
using the setprintNode(int) method of Inform.

20

V1.0
Draf

t

Predefined Inform Objects

Creating new Inform objects for printing messages is useful in contexts where
you would like a unique prefix to indicate where the message originated, say in
a specific class method. However, the IP2L framework provides a set of prede-
fined Inform instances which may be used to quickly generate output message
or to make sure all messages have a common prefix. These Inform objects are
static members of the IPPL class, which is used to initialize the framework. The
predefined instances are:
IPPL::Info = new Inform ("IPPL") ;
IPPL::Warn = new Inform("Warning");
IPPL::Error = new Inform("Error", INFORM_ALL_NODES);

These three instances are used to print generally informative messages, warning
messages, and error messages. Info and Warn only print on node 0 by default;
Error will print on all nodes. You may use these to printmessages in your own
application:
*IPPL::Info << "An informative message." << endl;

Notice that here that Info was first dereferenced, since it actually is a pointer
to an Inform object. A better (and recommended) way to use these predefined
instances is to use a macro which is defined for each instance. The macros to use
are INFOMSG, WARNMSG, and ERRORMSG; an example of their use is:
WARNMSG("rhis is a warning: value = " << warnvalue << endl);

The argument to the macro is then given to the associated Inform object for
printing.

2.2.2 Timer Class
Timer is used to perform simple timings within a program for use in, e.g., bench-
marking. It tracks real (clock) time elapsed, user time, and system time. It acts
essentially as a stopwatch: initially it is stopped, and YOU tell it to stop and start
with method calls. The Timer constructor takes no arguments; you create a new
Timer object, and use the following methods:
//Start the clock running. Time only accumulates in the Timer when it is running.
void start()
void stop() //Stop the clock. The clock may be started again later.
void clear() //Resets the accumulated time to zero
float clock_time() //Reports the accumulated "wall clock" time in seconds.
float user_time() //Reports theaccurnulated user CPU time in seconds.
float system_time() //Reports the accumulated system CPU time in seconds.
float cpu_time() //Reports user_time() + system_time()

21

V1.0
Draf

t

Example how to use the timer class:
Code Listing

IpplTimings::TimerRef selfFieldTimer_m; \\ definition

selfFieldTimer_m = IpplTimings::getTimer("computeSelfField");

selfFieldTimer_m.start();
/* compute something */

selfFieldTimer_m.stop();

IpplTimings::print();

Note on Cray XT3/4 only wall clock is reported.

2.2.3 Memory Footprint Class
This class allows the application to query the amount of available memory. This
feature will be available in V1.0.1.

22

V1.0
Draf

t

Chapter 3

FFT

The FFT class provides an interface for performing parallel Fourier transforms
of various types on IP2L Field objects. FFT is templated on the type of trans-
form to perform (CCTransform, RCTransform, or SineTransform); the
dimensionality Dim of the fields to be transformed, and the floating-point preci-
sion type (either float or double). It is capable of transforming along all di-
mensions of a Field or only specified dimensions, and it handles all of the data
transposes required to make the Fourier transforms efficient automatically. The
FFT constructor arguments vary slightly depending upon which type of transform
you wish to perform. Generally speaking, you provide an NDIndex object or ob-
jects which contain the domains of the input and/or output Fields for the Fourier
transform, an optional array of bools of length Dim indicating which dimensions
are to be transformed (default is all dimensions), and an optional bool indicat-
ing whether or not to compress the intermediate Fields needed to perform data
transposes when they are not in use. The default value of this optional argument is
false, but the user can set this argument to true if it is necessary to conserve mem-
ory. For a complex–to–complex Fourier transform, the input and output fields are
of the same element type and are the same size, so only one domain argument is
needed. So in the simple case of transforming all dimensions of a Field of type
complex<double>, we would construct the FFT object with the code
FFT<CCTransform,Dim,double> ccfft(domain);

where domain is an NDIndex<Dim> describing the domain of complex Fields
to be transformed with the FFT object. A real–to–complex Fourier transform
takes a field of real numbers and returns a field of complex numbers (or vice-
versa for an inverse complex–to–real transform), so we require separate domain
arguments describing each Field in the FFT constructor. From the theory of
Fourier mode analysis, we know that a Fourier transform of N real numbers will
produce N/2 + 1 unique complex modes, with modes 0 and N/2 being purely

23

V1.0
Draf

t

real. Some FFT routines take advantage of the fact that if you pack together the
real parts of modes 0 and N/2 as one complex number, you can store all the
resulting mode information in the same space as required for the input (i.e., N
real numbers or N/2 complex numbers). Such a technique tends to cause con-
fusion in multidimensional real–to–complex FFTs, since mode data must then be
separated out afterwards. So we choose a format in which the N/2 + 1 com-
plex modes are stored separately as complex numbers. Thus, when a real–to–
complex transform is performed on a Field of doubles, the resulting Field of
type complex<double> will have an extent one greater than half the length
of the input field along the first dimension to be transformed and the same length
along all other dimensions. This conformance of domains is checked by the FFT
constructor. We might construct an FFT object for real–to–complex transforms
with the line
FFT<RCTransform,Dim,double> rcfft(rdomain,cdomain,tdim);

where rdomain and cdomain are the conforming domains for the real and
complex fields and tdim is an array of bools indicating whether or not to trans-
form each dimension. Note that we assume the axes of the field are to be trans-
formed along in the order indicated by the domain arguments for a forward FFT
and in the reverse order for an inverse FFT. Each Index object inside the pro-
vided domain should refer to a particular axis of the input Field, and these axes
are transformed along in order. A sine transform is a special type of Fourier trans-
form in which only the sine (odd) modes are retained. This transform has a field
of real numbers for both its input and output, and its effect is to keep only that
portion of the data which exhibits odd parity (i.e., vanishes at the endpoints of
the interval). Typically, one wishes to enforce odd parity along one or more di-
mensions of a field, and then perform a standard real-to-complex transform along
remaining dimensions. Hence, we require that the user provide two arrays of bools
in the constructor: the first to indicate along which dimensions to perform a sine
transform, and the second to indicate all of the transform dimensions (both sine
transforms and standard FFTs). For example,
FFT<SineTransform,Dim,double> sinefft(rdomain,cdomain,sinedim,tdim);

constructs an FFT object for doing sine transforms along the dimensions indi-
cated by sinedim and a standard real-to-complex FFT over the other dimensions
included in tdim. Alternatively, such transforms could be achieved in two steps,
doing the sine transforms and the standard FFTs separately. In this case, we might
construct our sine transform FFT object with the code
FFT<SineTransform,Dim,double> sinefft2(rdomain,sinedim);

and then construct a second FFT object for handling the real-to-complex trans-
form. Note that a sine transform FFT object which is doing only sine trans-

24

V1.0
Draf

t

forms requires only a single domain argument describing the real input and output
Fields in its constructor.

Once the appropriate FFT object has been constructed, a Fourier transform of
data is invoked using the transform member function. The normal arguments to
this function are an integer value of + 1 or -1 to indicate the sign of the exponential
used in the transform (i.e., the direction of the transform, forward or inverse),
and the input and output Fields. For this ”two-field” form of the transform
function, there is also an optional argument of type bool, which indicates whether
or not the input Field is considered to be constant by the transform function.
The default value of this optional argument is false, which allows the transform
routine to attempt to use the input Field as temporary storage and avoid doing
an additional data transpose. You should set the value of this argument to true if
you must preserve the contents of the input Field for later use. We would use
our previously constructed FFT object for real–to–complex transforms to perform
a forward FFT in the following manner:
rcfft.transform(+l,realField,complexField);

The results of the transform are automatically normalized such that a forward
transform followed by an inverse transform returns the original data. For con-
venience, the FFT class has a member function setDirectionName which
allows you to associate a character string with each of the transform directions +
1 and -1. You might choose to refer to these directions as ”xtok” and ”ktox”, for
example.

In the case of a complex-to-complex FFT or a pure sine transform; the input
and output fields are the same size and of the same type. In these instances, we
offer the option of performing the transform ”in place”; that is, using just one
Field argument for both the input and output. For example, we could perform
an inverse complex-to-complex FFT with the code
ccfft.transform(-1,complexField2);

3.0.1 Improving FFT Performance
Some improvement in performance of the transform method may be obtained by
careful selection of the axis ordering of input and output Fields. In order to per-
form a parallel FFT along a particular dimension, the FFT object will first reorder
the axes so that the first axis is the one to be transformed. It does this by assigning
the field data into a new Field with a domain in which the order of the original
Index objects has been permuted. This new Field, which is maintained inter-
nally by the FFT class, has a data layout that is serial along this first dimension
and parallel along all other dimensions. With this layout, each processor can in-
dependently perform FFTs along the serial axis for each of the one-dimensional

25

V1.0
Draf

t

strips of data it owns. To subsequently transform along another dimension, the
FFT object must again transpose the data so that the next dimension to be trans-
formed is now the first dimension and is serial. These data transposes can be
fairly costly to perform. We can eliminate at least one data transpose if the out-
put Field supplied by the user has the same layout characteristics needed for
the final transform (or, in the case of an ”in place” transform, if the input Field
matches the layout needed for either the first or last transform), and has no guard
cell layers. For instance, let us assume we have a three-dimensional Field of
complex numbers and we want to transform all dimensions. If the Index objects
I,J, and K describe the first, second, and third axes of our Field domain, we
could perform a forward FFT with the line
ccfft.transform(+l,complexFieldl);

If the first dimension of complexField is serial, the transform method will
skip the first data transpose because the input data is already distributed appropri-
ately for transforming along the first dimension. Similarly, if we were to call an
inverse transform with this same Field, it would transform the axes in reverse
order, and we would be able to skip the final data transpose. Alternatively, we
might choose to do this FFT using separate input and output Fields:
ccfft.transform(+1,complexField1,complexField2);

In this case, the final optional argument to the ”two-field” trans form function
defaults to false, meaning that complexFieldl is not considered constant and
may be used in place of a temporary Field to avoid the first data transpose. In
addition, the output Field can be used in place of the final temporary Field if
it has the proper layout. If complexField2 has its axes reordered so that its
first axis is the final axis to be transformed (e.g., K, then I, then J) and that first
axis is serial, then we can skip the final data transpose. This choice of data layout
results in a slightly faster parallel FFT, and it is often convenient if all you need
to do is transform the data, do a brief computation with the transformed data, and
then invert the transform.

Another issue of relevance to the performance of the transform method is the
type of routine used to perform the actual one-dimensional FFT. Currently, we
provide two options for this. The first is Fortran 77 implementations of FFT rou-
tines from the Netlib repository. These are portable and highly optimized routines
that we invoke via C++ wrapper functions. The second option (available only
on SGI and Cray systems) is native FFT routines from the SGI/Cray Scientific
Library. These routines can be substituted for the portable Netlib routines by sup-
plying the option USE SCSL FFT to the configure utility before compiling the
IP2L library. These native library routines tend to be somewhat faster than the
portable Fortran routines, and we plan to offer the ability to use native FFT rou-
tines such as FFTW in the future.

26

V1.0
Draf

t

Chapter 4

Particles

This section describes the IP2L framework classes which provide the capability
to performing particle-based simulations. We first describe how to design and
instantiate Particle classes customized to the needs of a specific application,
and then discuss the possible operations and expressions in which a particle object
may be employed and end with an ready to use example.

4.1 Basic Particle Object Characteristics
The IP2L framework treats Particle classes as containers which store the char-
acteristic data for N individual particles. Each particle has several attributes, such
as position, mass, velocity, etc. Looked at in another way, Particle classes
store several attribute containers, where each attribute container holds the value
of that attribute for all N particles. Particle objects in IP2L may be thought of
as shown in the following diagram: ...

There are two particle attributes predefined, namely R (position) and ID a
global unique identifier.

The data type of each attribute, the number of attributes, and the names for
these attributes are completely customizable, and are specified in the manner de-
scribed in the following sections. Any number of different Particle classes
may be defined and used within a given simulation. Also, the Particle objects
may interact with IP2L Field objects or may be used independently. In addition
to the attributes, each Particle object uses a specific layout mechanism, which
describes the data of the individual particles is spread across the processors in a
parallel environment. The IP2L framework provides several different Particle
layout classes, any of which may be selected to partition the particle data among
processors. The choice of layout depends on the intended use of the Particle
object, as discussed later. Once defined and instantiated, Particle objects in

27

V1.0
Draf

t

the IP2L framework may be used in many ways, including:

• Operations involving all the particles within a Particle object may be
specified using simple expressions, in a manner very similar to that used for
Field objects. These expressions may involve any of the attributes of the
particles as well as other scalar data, and they may use not only the stan-
dard mathematical operators +, -, *, /, etc., but also standard mathematical
functions such a s cos () , exp () , mod () , etc.

• Alternatively, you may set up explicit loops that perform operations involv-
ing the attributes of a single particle or a subset of all the particles.

• Particles may be created or destroyed during a simulation.

• Particle-to-Field and Field-to-Particle operations may be per-
formed (e.g., a particular Particle attribute may be deposited onto a
specified Field using a chosen interpolation method).

4.2 Defining a User-Specified Particle Class
There is no specific class within the IP2L framework called Particle. Rather,
the first step in deploying particles within a IP2L application is to define a user-
specified Particle class, which contains the attributes required for each par-
ticle, as well as any, specific methods or data the user may need. To do this,
the ParticleBase and ParticleAttrib classes are used, along with a se-
lected subclass of the ParticleLayout class. The steps to follow in creating
a new Particle class are:

• Based on the type of interactions which the particles have with each other
and with external objects such as a Field, select a method of distributing
the particles among the nodes in a parallel machine.

• Next, decide what attributes each particle should possess.

• Third, create a subclass of ParticleBasewhich includes these attributes
(specified as instances of the ParticleAttrib class template).

• Finally, instantiate this user-defined subclass of ParticleBase and cre-
ate and initialize storage for the particles which are to be maintained by this
object.

The following sections describe in more detail how to accomplish these steps.

28

V1.0
Draf

t

4.2.1 Selecting a Layout: ParticleLayout and Derived Classes
When used in a parallel environment, the IP2L framework partitions the particles
in a Particle container among the separate processors and includes tools to
spread the work of computing and the results of expressions involving Particle
attributes among the processing nodes. There are, however, different ways in
which particles may be distributed among the processors, and the method which
should be used depends upon how the particles in a Particle object will in-
teract with each other and with Field objects (if at all). The IP2L framework
includes different Particle layout mechanisms, which are all derived from the
ParticleLayout class. Each Particle object needs its own layout object;
that is, you cannot create a layout object and give it to more than one Particle
object. The methods typically used to determine how to assign particles to par-
ticular nodes are based on analysis of the position (R attribute) of each particle.
Thus, ParticleLayout and its derived classes have two template parameters:
the type and the dimensionality of the particle position attribute (this particle po-
sition attribute is discussed in more detail later). The following sections describe
the particle layout mechanisms currently available in the IP2L framework.

4.2.2 The ParticleUniformLayout Class
The ParticleUniformLayout class maintains an equal number of particles
on each node, with no consideration of particle position. ParticleUniformLayout
is useful in those cases where particles do not interact with each other but per-
haps with some other external agent, so that no consideration need be made about
which particles are located near to others. In that case, with this layout maintains
an equal balance of memory usage among the processors and requires relatively
small amounts of interprocessor communication. If you require the ability to com-
pute an interaction between a particle and its nearest neighbors, this is not the
proper layout to use, in that case, the ParticleSpatialLayout class (discussed
next) is a better choice. The constructor for ParticleUniformLayout takes
no arguments, but does require the two template parameters that specify the type
and dimensionality of the particle position attribute. An example of creating a
new ParticleUniformLayout instance for a 3D particle simulation is:
ParticleUniformLayout<double,3> uniformlayout();

4.2.3 The ParticleSpatialLayout Class
ParticleSpatialLayout, in contrast to ParticleUniformLayout, as-
signs particles to nodes based upon their spatial location relative to a FieldLayout.

29

V1.0
Draf

t

It is useful when the particles will be interacting with other particles in their neigh-
borhood or with a Field object. ParticleSpatialLayout will keep a par-
ticle on the same node as that which contains the section of the Field in which
the particle is located. If the particle moves to a new position, this layout will reas-
sign it to a new node when necessary. This will maintain locality between the par-
ticles and any Field distributed using this FieldLayout. Further more it will
help keep particles which are spatially close to each other local to the same proces-
sor as well. As with all the layout classes, ParticleSpatialLayout requires
the type and dimensionality of the particle position attribute as template param-
eters. The constructor for ParticleSpatialLayout takes one argument: a
pointer to a FieldLayout object that tells the ParticleSpatialLayout
how the Field is allocated among the parallel processors, so that the particles
may be maintained local to this Field. Note that you do not, need to create a
Field instance itself, you only need to give ParticleSpatialLayout a
FieldLayout object. An example of creating an instance of this class is as
follows:
FieldLayout<3> myfieldlayout(Index(l6), Index(16), Index(32));
ParticleSpatialLayout<double,3> myparticlelayout(&myfieldlayout);

Note that the dimensionality of the FieldLayout and the ParticleSpatialLayout
(in this example, 3) must be the same. You may also create a ParticleSpatialLayout
instance without providing a FieldLayout. In this case, particles will remain
on the node on which they were created. If at some future time you wish to provide
a FieldLayout object to tell the ParticleSpatialLayoutwhere to place
the particles, you may do so using the setFieldLayout (FieldLayout<Dim>*)
method of ParticleSpatialLayout. This is useful when reading particles
in from an external source and the size of the spatial domain containing the par-
ticles is not known until all the particles have been read. The following example
demonstrates the use of the capability:
ParticleSpatiaILayout<double,3> myparticleLayout;
// calculate the size of the domain required to contain all the particles
// create a new FieldLayout object based on these calculations
FieldLayout<3> myfieldlayout(Index(minx, maxx), Index (miny, maxy),

Index(minz,maxz);
myparticlelayout.setFieldLayout(&myfieldlayout);

ParticleSpatialLayout also provides functionality to maintain cached
ghost particles from neighboring nodes which might be required for particle -
particle interaction. A caching policy can be defined using the fourth template
parameter of ParticleSpatialLayout:
typedef UniformCartesian<Dim, double> Mesh_t;
typedef ParticleSpatialLayout<double,Dim,Mesh_t,

BoxParticleCachingPolicy<double, Dim, Mesh_t> > playout_t;

30

V1.0
Draf

t

The available chaching policies are: NoParticleCachingPolicy,BoxParticleCachingPolicy
and CellParticleCachingPolicy. With NoParticleCachingPolicy
there is no caching whatsoever. BoxParticleCachingPolicy extends the
interface of ParticleSpatialLayout by two functions void setCacheDimension(int
d, T length) and void setAllCacheDimensions(T length)which
are used to set the size of the cached region around the local domain in units of
space. CellParticleCachingPolicy extends the interface of ParticleSpatialLayout
by two functions void setCacheCellRange(int d, int length) and
void setCacheCellRanges(int d, int length) which are used to
set the size of the cached region around the local domain in units of grid cells of
the mesh. BoxParticleCachingPolicy is the default policy.

The caching can be enabled or disabled by calling the enableCaching()
or disableCaching() member functions of ParticleSpatialLayout.
Caching is disabled by default.

4.2.4 Selecting Particle Attributes: The ParticleAttrib
Class

ParticleAttrib is a class template that represents a single attribute of the
particles in a Particle object. Each ParticleAttrib contains the data for
that attribute for all the particles. Within a user-defined Particle class, you
declare an instance of ParticleAttrib for each attribute the particles will
possess and assigns to it an arbitrary name. ParticleAttrib requires one
template parameter, the type of the data for the attribute. As an example, the
statement:
ParticleAttrib<double> density;

declares an instance of ParticleAttrib named ’density’, which will store
a quantity of type double for all the particles of the Particle class that contains
this data member.

4.2.5 Specifying a User-Defined Particle Class:
The ParticleBase Class

ParticleBase is the class that all user-defined Particle classes must spec-
ify as their base class. It stores the list of attributes for the particles (which are
maintained as instances of ParticleAttrib) and a selected parallel layout
mechanism. In addition to providing all the capabilities for performing operations
on the particles and their attributes, ParticleBase also defines two specific
attributes which all user-defined Particle classes inherit:

31

V1.0
Draf

t

ParticleAttrib<Vektor<T,Dim>> R;
ParticleAttrib<unsigned> ID;

The first attribute, R, represents the position of each particle. Each position is
stored as a Vektor<T, Dim>, which is a IP2L data type representing a dim-
dimensional vector with elements of type T. The second attribute, ID, stores a
unique unsigned integer value for each particle. The values are not guaranteed
to be in any particular order, but they are guaranteed to be unique for each par-
ticle. ParticleBase has one template parameter, the layout class to be used
to assign particles to processors (e.g., ParticleSpatialLayout). The data
type and dimensionality of the particle position attribute (R) will be the same
as those used to create the specific ParticleLayout derived class. Each
ParticleBase contains one instance of the chosen layout class. There are
two constructors for ParticleBase: a default constructor that creates a new
instance of the layout class using the layout’s default constructor, and a construc-
tor which takes a pointer to an instance of the layout class. The second version of
the ParticleBase constructor is useful when the desired layout class requires
arguments to its constructor (e.g., ParticleSpatialLayout, which may be
give in a FieldLayout pointer).

Using ParticleBase, ParticleAttrib, and a selected class derived
from ParticleLayout, you can create a user-defined Particle class using
the following code template:

32

V1.0
Draf

t

Code Listing
1 class Bunch : public ParticleBase< ParticleSpatiaILayout<double,3> >
2 {
3 public:
4 // Attributes for this particle class (besides position and ID).
5 ParticleAttrib<double> qm; // q/m ratio
6 ParticleAttribs Vektor<double,2> > vel; // velocity
7

8 // constructor
9 Bunch(Layout_t *L) : ParticleBase<Layout_t>(L) {

10 addAttribute(qm);
11 addAttribute(vel);
12 }
13 };

Let us describe this example in detail by discussing the important lines in the
order of use.

Line 1: You may select whatever name is appropriate for the specialized
Particle class, but it must be derived from ParticleBase.

In this case, we explicitly specify the type of layout to use (ParticleSpatialLayout),
with particle position attribute type and dimensionality template parameters of
double and 3, respectively. Alternatively, Bunch may have been declared as a
class template itself and may have passed on the layout template parameters to
ParticleBase. In that case, the first line would instead look like
template <class PLayout>
class Bunch : public ParticleBase<PLayout>

Lines 5-6: Here is where the attributes for the particles in the Particle
object are declared. They may be given any name other than R or ID. Instead of
stating the type and dimensionality of this attribute specifically, you may also use
one of the following typedefs and constants defined in ParticleBase:

• Dim - the dimensionality of the particle position attribute (in this example,
3)

• Position t - the type of data used to store the position attribute compo-
nents (here, this type is double)

• Layout t - a synonym for the specified layout class

• ParticlePos t - a typedef for the particle position attribute; it is short-
hand for ParticleAttrib< Vektor<Position t,Dim> >

and could have been used to specify the attribute vel in the above example as
ParticlePos t vel;

• ParticleIndex t - a typedef for the particle global ID attribute; it is
short for ParticleAttrib<unsigned>

33

V1.0
Draf

t

The constructor for this user-defined class must initialize ParticleBase with
a pointer to an instance of the selected layout class.

In this example, the layout class is ParticleSpatialLayout, but using
one of the typedefs listed above, we can abbreviate this as Layout t. Note that
we only define one constructor here, omitting the default constructor. This is done
because ParticleSpatialLayout (which we have hard-coded as the layout
for this user-defined Particle class) requires an argument to its constructor,
and this can only be provided if we use a constructor for our Particle class as
shown here. A new instance of this class would be declared in an application as
follows:
Bunch myBunch (new ParticleSpatialLayout<double,3>(myFieldLayout));

where myFieldLayout was a FieldLayout object created previously. The
only action that is required in the constructor for the derived class is to inform
the base class of the declared attributes, using the addAttribute(.) method
of ParticleBase, which registers the specified ParticleAttrib instance
with the parent class ParticleBase. The order in which attributes are regis-
tered is not important.

4.2.6 Example Particle Classes: The Genparticle and
GenArrayParticle Classes

The IP2L framework provides two classes which are examples of Particle
classes derived from ParticleBase: Genparticle and GenArrayParticle.
They may be used as samples from which to build new classes, or they may be
used to quickly include particle capabilities in an application. Genparticle is a
Particle class with three attributes: R and ID inherited from ParticleBase,
and an attribute named data with elements of an arbitrary type. Genparticle
has two template parameters: the type of particle layout to use and the type T of at-
tribute data. It has two constructors just as ParticleBase does: the default and
one taking a layout pointer. An example of instantiating a GenParticleobject
is shown below.
GenParticle<ParticleUniforrnLayout<float,3>,UserDefinedType> GP();

GenArrayParticle is almost identical to GenParticle, the difference
being that GenArrayparticle contains not just one but an array of attributes
data [0 ... N-l] of a specified type. The number of elements in the attribute
array, N, is given as a third template parameter. The following example shows a
GenArrayParticle being created with 5 floats stored in the data array for
each particle:
GenArrayParticle<ParticleSpatialLayout<doulble,3>,float,5> GAP(

new ParticleSpatialLayout<double,3>(myFieldLayout));

34

V1.0
Draf

t

It is important to note that the array data in GenArrayParticle contains
a set of particle attributes of the same type. In situations where it is necessary to
have a variety of particle attribute types, you may use the Genparticle class
with the type of data being specified as a user-defined struct containing the various
attributes needed.

4.2.7 Using Particle Classes in an Application
After a specific Particle class has been defined and created in a IP2L appli-
cation, you may create and initialize new particles, delete unwanted particles, and
perform computations involving these particles. This section describes how to
accomplish these tasks.

4.2.8 Creating New Particles
When a Particle object is created, it is initially empty. Storage for new par-
ticles is allocated using the create (unsigned) method of ParticleBase. For
example, if a Particle object bunch has been created already, the statement
bunch.create(100);

will allocate storage for 100 new particles. All the attributes for the particles
in the Particle object will have this new storage allocated. The data is unini-
tialized, except for the global ID attribute; you must assign the proper values to
the position and any other attributes that have been defined. The new storage is
appended to the end of any existing storage.

ParticleBase includes two methods that allow you to query how many
particles exist. The function getTotalNum() will return the total number of
particles being stored among all the processors; the function getLocalNum()
will return the number of particles just on the local node. Although the new stor-
age space is allocated on the local processor on which the call to create was exe-
cuted, the Particle class will not officially add the particles to its local count
(and will not tell any other processors it has created these new particles) until you
call the update()method of ParticleBase. Thus, a call to getLocalNum()
will report the same number just before and just after the call to create. The stor-
age does exist after create is called, but only after the update method (which is
discussed in more detail in a later section) has been called will all the processors
have correct information on their local and total particle counts.

35

V1.0
Draf

t

4.2.9 Initializing Attribute Data
After calling create to allocate new storage, you must initialize the data. This
should be done after calling create and before calling update for the Particle
object. After the data is initialized, the update routine will properly distribute
the particles to their correct node based on the layout mechanism chosen for that
Particle object and possibly the positions of the particles as set during their
initialization. The following example shows one way to initialize the data for
newly created particles when running on a single-processor machine. (This exam-
ple will be modified in the following section for the case of running in parallel.)
Code Listing
// create and’initialize data for an instance of Bunch
Bunch myBunch(new Bunch::Layout_t(myFieldLayout));
int currLocalPtcls = myPtcls.getLocalNum();
myBunch.create(100);
for (int i = 0; i < 100; i++) {

myBunch.R[currLocalPtcls + i] = Vektor<double,3>(0.0, 1.0, 0.0);
myBunch.vel[currLocalPtcls + i] Vektor<double,3>(1.0, 1.0, 1.0);

}
myBunch.update();

In this example, 100 new particles are created, and the R and vel attributes
are initialized to Vektor quantities. Notice that each attribute is accessed simply
by specifying it as a data member of the myBunch object. After create was called,
even though the 100 particles were not added to the Particle object’s count of
local particles, the storage was allocated and it was possible to assign values to
the new elements in the attribute storage (accessed simply using the [] indexing
operator). Finally, calling update added the new storage to the count, of particles
stored in myBunch. Further calls to getLocalNum and getTotalNum would report
the proper values.

4.2.10 Initializing Attribute Data on Parallel Architectures
The code shown in the previous example has one problem when used on parallel
architectures: the call to create is performed on each processor, so if there were P
processors a total of 100*P particles would be created. This may be the desired
behavior, if so, the previous example is sufficient. However, if you are reading
data on particle positions and other attributes from a file or some other source,
you may wish to create particles on a single processor, and then distribute the data
to the proper nodes. To do this, you need to call create and assign initial data on
only one node but call update on all the processors. The singlelnitNode()
method of ParticleBase will return a boolean value indicating whether the
local processor should be used to create and initialize new particles in this way.
The following example demonstrates how to use this method for initializing par-

36

V1.0
Draf

t

ticles:
Code Listing
// create and’initialize data for an instance of Bunch
Bunch myBunch(new Bunch::Layout_t(myFieldLayout));
int currLocalPtcls = myPtcls.getLocalNum();
if (myBunch.singleInitNode()) {

myBunch.create(100);
for (int i = 0; i < 100; i++) {

myBunch.R[currLocalPtcls + i] = Vektor<double,3>(0.0, 1.0, 0.0);
myBunch.vel[currLocalPtcls + i] Vektor<double,3>(1.0, 1.0, 1.0);

}
}
myBunch.update();

4.2.11 Deleting Particles
Particles may also be deleted during a simulation. The method destroy
(unsigned M, unsigned I) of ParticleBase will delete M particles,
starting with the Ith particle. The index I here refers to the local particle index,
not the global ID value. Thus I = 0 means delete particles starting with the first
one on the local processor.

Unlike the situation when creating new particles, the storage locations for the
deleted particles will not be removed from attribute data storage until update is
called. Instead, the requests to delete particles are cached until the update phase,
at which time all the deletions are performed. You are allowed to issue multi-
ple delete requests between updates. For example, if there are 100 particles
on a local node, and you request to delete particles 0 to 10 and then request to
delete particles 60 to 70, nothing will change in the attribute storage until you
call update, and no change will occur to the local and total particle counts until
update() is complete.

4.2.12 Updating Particles: The update() Method
The update() method of ParticleBase is responsible for making sure that
all processors have correct information about how many particles exist and where
they are located in a parallel machine. As mentioned previously, updatemust be
called by all processors after a sequence of particle creation or deletion operations.
The update method is also responsible for maintaining a proper assignment of
particles to processors, based on the particular ParticleLayout class used to
create the ParticleBase object. Typically, this layout mechanism depends on
the position of particles, so when particles change their position, they may need
to be reassigned to a new processor to maintain the proper layout. In this case,
the update method should be called whenever a computation is complete which
alters the attributes (e.g. position) that a layout depends upon. The following

37

V1.0
Draf

t

short example demonstrates using update in conjunction with some operation
that alters the x-coordinate of a set of particles.
Code Listing
// do some computation involving myBunch for several time steps
while (computation_done == false) {

// for each particle, add some constant to the x coordinate
myBunch.R(0) += 0.li
// update the Particle object; this may move particles between nodes
myBunch.update();
// determine if the computation is done, etc.

}

4.2.13 Using Particle Attributes in Expressions
Computations involving particle attributes may be performed in many ways. Data-
parallel expressions that involve all particles of a given Particle object may be
used, or specific loops may be written that employ attribute iterators or nearest-
neighbor pairlist iterators.

Attribute Expressions

Just as with the Field class, you may perform data-parallel operations on par-
ticle attributes using a simple expression syntax, which the IP2L framework will
translate into efficient inlined code. These operations will be performed for every
particle. The expressions may include any of the attributes in a Particle object
as well as scalar values, may use mathematical operators such as +, -, *, / etc., and
may call standard mathematical functions such as cos(), exp(), mod() ,
etc. for an attribute value of each particle. Some examples are shown below.
double dt = 2.0;
myBunch.R += myBunch.vel* dt;
myBunch. vel = 1. - log (1. + myBunch. R * myBunch. R) ;
myBunch.update();

Attribute expressions will perform their operations on all the particles in the
Particle object, including any new particles allocated via a call to create, even
before update has been called. This fact is useful when initializing the attributes
for newly created particles (e.g., to set the init value for some scalar quantity to
zero). Generally, however, unless you are performing an initialization of new
particles, you should avoid using particle expressions of this type after calls to
create or destroy and before a call to update.

Some attributes, such as Vektors or Tenzors, have multiple components,
and you may wish to involve only the Nth component of the attribute in an expres-
sion. To do so, use the () operator to select the Nth component of that attribute.
For instance, using myBunch from the previous example, you can change just the
x-coordinate of the particle position attribute R as follows:

38

V1.0
Draf

t

myBunch.R(0) = myBunch.R(l) - cos(myBunch.R(2));

For 2D or 3D quantities, use two or three indices. For example, if rho is a 3x3
Tenzor attribute of myBunch, you can do the following:
myBunch.rho(0,0) = -(myBunch.rho(0,l) + myBunch.rho(0,2));

Attribute expressions may also use the where operator in much the same way
as for Field expressions. The first argument to where is some expression that
results in a boolean value for each particle. The second and third arguments are
expressions that will be evaluated for a particle if the first argument is true or
false, respectively, for that particle. For example,
myBunch.vel = where(myBunch.R(0) > 0.0, -2.0 * myBunch.vel, myBunch.vel)

changes the value of the vel attribute in myBunch when the x-coordinate of
the particle position is positive.

4.2.14 Particle Iterator Loop
You also have the capability of performing operations on specific particles using
iterators or standard indexing operations. The ParticleAttrib containers in a
Particle class may be used just as regular STL containers. The begin() and
end() methods of the ParticleAttrib class will return an iterator pointing
to the first element and just past the last element, respectively, of the attribute.
These iterators may be used in an explicit loop just as if they were pointers into
the attribute array.
ParticleAttrib<unsigned>::iterator idptr, idend = myBunch.ID.end();
for (idptr = myBunch.ID.begin(); idptr != idend; ++idptr)

cout << "Particle ID value: " << *idptr << endl;

Iterators are available for all ParticleAttribs. As an alternative, you
may simply use the [] operator to access the attribute data of the Nth particle on
a node, treating ParticleAttrib as a regular array of data.
int nptcls = myBunch.getLocalNum();
for(int i=0; i < nptcls ++i) {

cout << "Particle ID value: " << myPtcls.ID[i] << endl;
}

4.3 Nearest-Neighbor Interactions (Jakob)

4.3.1 Particle - Particle Interactions
Efficient particle - particle interactions can be achieved by use of PairBuilder
objects. The basic usage is as follows:

39

V1.0
Draf

t

PairBuilder< Bunch<ParticleLayout_t> > PB(myBunch);
PB.for_each(PairCondition(), PairFunctor());

This will call PairFunctor for each pair of particles that fulfills the PairCondition.
There are three PairBuilders available: HashPairBuilder, BasicBairBuilder
and SortingPairBuilder. HashPairBuilder should be used in most cases
since it has the best time complexity. There are three predefined PairConditions.
TrueCondition is always true and can be used to iterate over all pairs, RadiusCondition
is true for each pair that is closer than a given interaction radius and BoxCondition
is true for each pair where one particle lies inside a bounding box around the other
particle. The following code shows how to iterate over all pairs within a given in-
teraction radius:
struct PairFunctor{

void operator()(std::size_t i, std::size_t j, Bunch<ParticleLayout_t> &P) const
{

//some interaction involving particles i and j
}

};

HashPairBuilder< Bunch<ParticleLayout_t> > HPB(myBunch);
HPB.for_each(RadiusCondition<double, Dim>(interaction_radius), PairFunctor());

To correctly generate all pairs in a multi process simulation a caching strategy
has to be chosen so each process also has the required ghost particles. To achieve
this for the example given one would call
PL->setAllCacheDimensions(interaction_radius);
PL->enableCaching();

with PL being the ParticleSpatialLayout of the bunch.
It is also possible to write custom pair conditions. These have to provide a

operator() that takes two vectors and returns a bool, when the functor is used,
it is passed two vectors that represent the particle positions. Additionally pair
conditions have to provide a getRange function that takes an integer as input and
returns the “radius” along that dimensions for which the pair condition can be true.
In other words: for two particle positions a and b for which the pair condition
returns true, the condition |a[i] - b[i]| <= getRange(i) must hold.

4.3.2 Particle - Field Interactions
Many particle-based simulation methods, including ”particle-in-cell” (PIC) sim-
ulations, rely on the ability of particles to interact with field quantities. For in-
stance, in particle-based accelerator (plasma) simulations, you typically track the
motions of charged plasma particles in a combination of externally applied and
self-generated electromagnetic fields. In a IP2L application, such fields might be

40

V1.0
Draf

t

stored as Field objects of type Vektor existing on a pre-defined mesh. Par-
ticles moving through this mesh must be able to ”gather” the current value of a
Field to their exact positions. Additionally, in order to compute the values of
self-generated fields, the particles must be able to ”scatter” the value of an attribute
onto nearby mesh points, producing a Field. These gather/scatter operations are
done using a set of IP2L interpolation methods.

IP2L provides a hierarchy of interpolation classes, each derived from the base
class Interpolate and each containing the basic gather and scatter
functions. The gather method allows you to gather one or more specified
Fields into an equal number of ParticleAttribs. Similarly, scatter
will accumulate one or more ParticleAttribs on to an equal number of
Field objects. An example of how to scatter the particle density to a Field is
shown below.
InterpolateNGP<Dim> mylnterpolater(myBunch); // create NGP interpolater
Field<double,Dim> ptcl_density(myfieldlayout); // create density field
myInterpolator.scatter(myBunch.density,ptcl_density); // do scattet

The various classes derived from Interpolate implement these gather and
scatter methods using different well-known interpolation schemes, such as
nearest grid point (NGP), linear interpolation, and the subtracted-dipole scheme
(SUDS). You may use these provided classes as a template for deriving new
classes from Interpolate that implement other interpolation schemes of in-
terest.

In case of the CIC Interpolation and non-cyclic boundary condition, care has
to be taken to not place particles in the outer half of boundary cells. Otherwise
values will be scattered out of the grid and be irretrivable.

41

V1.0
Draf

t

Chapter 5

Using the Field and Related
Classes

This section introduces the interface of the Field class and related classes. We
describe how to instantiate Field objects, use Index objects to perform in-
dex operations, perform expression operations with overloaded operators, apply
boundary conditions, use the where construct for conditionals, invoke reduction
operations, and use mathematical functions.

5.1 Field Object Instantiation

5.1.1 Field Template Parameters
The Field class is parametrized on 4 template parameters: type T, dimensional-
ity Dim, mesh type Mesh, and centering Centering.
Field<class T, unsigned Dim, class Mesh=UniformCartesian<Dim,MFLOAT=doub1e>,

class Centering=Mesh::DefaultCentering>

The T parameter represents the type of data that can be stored inside of a Field.
Currently, the Field class supports the intrinsic types bool, int, float,
double. One may use any user-defined type or class as the template parameter;
however, one must also add traits to the framework to implement the desired data-
parallel promotion properties so that Field operations work. The framework
includes
Vektor<Dim, T>, Tenzor<Dim , T>, SymTenzor<Dim, T>

classes1 , which are (mathematical) vectors, tensors, and symmetric tensors whose
elements are of type T. Traits are implemented in these classes so that they may

1The strange spellings avoid conflicts with other classes such as the STL vector class.

42

V1.0
Draf

t

serve as elements of fully-functional Field objects. The Dim parameter repre-
sent the dimensionality of the Field that is being constructed. This must cor-
respond to the Dim parameters in all other objects used to construct the Field.
The Mesh parameter represents the mesh on which the field is discretized. IP2L
pre-defines two appropriate classes (Cartesian and UniformCartesian)
to use for this parameter, one of which serves as the default value of the Field
“Mesh” template parameter: UniformCartesian<Dim, double>. Refer
to the IP2L User Refercnce for details on the UniformCartesian class; basi-
cally, it represents a Cartesianmesh with uniform grid spacings. The Cartesian
class represents a cartesian mesh with nonuniform grid spacings. NB.: the type
parameter MFLOAT for Cartesian represents only the data type used to store
internal information like mesh spacing values; if double satisfies the user, he
need not specify it.

The Centering parameter represents the centering of the field on its mesh.
IP2L pre-defines Cell and Vert classes to represent cell and vertex centering,
and has implementations of appropriate mechanisms for Cartesian and other
classes which use them. IP2L also predefines a CartesianCentering class
to represent more general centerings–combinations of vertex and cell centering
direction-by-direction and component-by-component for Fields with multicom-
ponent element types such as Vektor. Finally, IP2L predefines a wrapper class
CommonCartesianCenteringswith typedefs several common special cases
to represent face and edge centerings, for example, refer to the IP2L User Refer-
ence for details.

5.1.2 Invoking the Field Constructor
There are six steps in the general construction of a Field:

1. Construct Index objects, one for each dimension of the Field. The
Index objects describe the desired index domain along the axis.

2. Construct an NDIndex object with the dimensions of the Field. A single
NDIndex object contains N Index objects, and fully describes the total
index domain.

3. Populate the NDIndex with the Index objects created in step 1.

4. Construct a FieldLayout object with the NDIndex object. The FieldLayout
object will control how the data of a specified Field object will be parti-
tioned among physical nodes in a parallel environment.

43

V1.0
Draf

t

5. If desired, construct BConds and GuardCellSizes objects for specify-
ing boundary conditions and guard-cell layers, respectively. If unspecified,
these default to no-op and zero.

6. Finally, construct a Fieldwith the FieldLayout, BConds, and GuardCellSizes
object as arguments to the constructor. This target Fieldmust be parametrized
as described in Section 5.1.1. The Dim template parameter must match the
one for the FieldLayout and other objects involved, or you will get a
compiler error.

For the cases of a 1,2, or 3 dimensional Field, you may omit steps 2 and
3; instead directly pass the one, two, or three Index objects as arguments to
the FieldLayout() constructor. The Dim template parameter must match the
number of Index objects passed or you will get a compiler error.

The following code segment demonstrates the construction of a single two
dimensional Field of double’s using the six-step method described above:
Code Listing
unsigned Dim = 2;
int Nx = 100, Ny = 50;
Index I(Nx), J(Ny)l // Step 1
NDIndex<Dim> domain; // Step 2
domain[0] = I; // Step 3
domain[1] = J; // Step 3
FieldLayout<Dim> layout(domain); // Step 4
Field<double, Dim> A(layout); // Step 5

The following three examples show the construction of a 3 dimensional Field
without the intermediate NDIndex construction:
Index I(100), J(5), K(25);
FieldLayout<3> layout(I,J,K);
Field<double, 3> A(layout);

You may also construct Field via copy constructor, wherein a Field is
copied into another Field. This results in an element-by-element copy of the
data:
// assuming we have constructed a 2D Field of doubles in A
A = 2.0;
Field<double, Dim> B(A);
// B now contains the values 2.0 everywhere

5.2 The Index Class
The Index class represents a strided range of indices, and it is used to define
the index extent of Field objects on construction and to reference subranges
within Field’s in expressions. The constructor for Index takes one, two or

44

V1.0
Draf

t

three int arguments. In the case of three arguments, these represent the base index
value, the bounding index value and the stride. The two and one-argument cases
are simplifications, with the one-argument case being qualitatively different; in
particular,
Index I(8);

instantiates an Index object representing the range of integers from 0 to 7 inclu-
sive, with implied stride 1. The two-argument
Index J(2,8);

instantiates an Index object representing the range of integers [2, 8], with implied
stride 1. The three-argument
Index K(1,8,2);

instantiates an Index object representing the range of integers [1, 8], with stride
2; that is the ordered set {1, 3, 5, 7}.

Note that the single argument in the one-argument case defines the number of
elements, rather than the bound. This means that Index J(8), which represents
[0, 7], is different than Index J(0,8) and Index J(0,8,1), which both
mean [0, 8].

As illustrated in Section 5.1.2, you use Index’s in constructing the FieldLayout
object which goes into the Field constructor. The sizes of the Index’s used to
construct the FieldLayout determine the size of the Field in each dimension;
here size means the number of integers in the range represented by the Index.
For example, the following code segment instantiates a 3-dimensional Field A
having size 5 in the first dimension, size 9 in the second dimension, and size 4 in
the third dimension:
Code Listing
unsigned Dim = 3;
int Nx = 5;
int Ny = 9;
int Nx = 4;
Index I(Nx), J(Ny), K(Nz);
FieldLayout<Dim> layout(I,J,K);
Field<double, Dim> A(layout);

You can also use Index objects for initializing Field elements with integer
ranges of values. This and more typical use of Index object in conjunction with
Field objects is discussed in Section 5.7.2.

Finally, IP2L defines various operators on Index objects, mostly used to
represent finite-different stencil operations on Field’s, as described in Section
5.7.2. If
Index I(8);

is an Index object representing [0, 7], then the expression

45

V1.0
Draf

t

I - 1

represents the range of the same length offset by −1, or [−1, 6]. Similarly, the
expression
I + 1

represents [2, 8].

5.3 The NDIndex Class
The NDIndex class is primarily a container which holds N Index objects. It is
templated on the spatial dimension N, and the constructor takes N Index argu-
ments. For example:
Index I(5), J(9), K(4);
NDIndex<3> Domain(I, J, K);

An NDIndex object appears as an array of Index objects; you may access
the Index object for and dimension using the [] operator. For example:
Index tmpJ = Domain[1];

5.4 The FieldLayout Class
FieldLayout is the class responsible for determining where the data in a Field
object is located. It is templated on the number of indices for the Field; when
constructing a new FieldLayout object, you must tell it what is the index range
for each dimension (or axis). A single NDIndex object may be used as the argu-
ment to a new FieldLayout instance:
Index I(5), J(9), K(4);
NDIndex<3> Domain(I, J, K);
FieldLayout<3> Layout(Domain);

Or, possibly more conveniently, you may just specify the N Index objects to
the constructor of the FieldLayout directly, without explicitly creating an
NDIndex object:
Index I(5), J(9), K(4);
FieldLayout<3> Layout(I, J, K);

5.4.1 Specifying Serial or Parallel Layout
By default, a FieldLayout object will partition all N dimensions in a parallel
fashion. For example a 2D Field with indices running from 0 . . . 5 in each
dimension, created with a FieldLayout specified as follows:

46

V1.0
Draf

t

Index I(6), J(6);
FieldLayout<3> Layout(I, J);

will have both the I and J indices partitioned across the nodes in parallel. This
would lead to a layout something like that shown in the following figure, if there
are four nodes:

TODO: BILD
Unless you tell it otherwise, FieldLayoutwill attempt to distribute the data

among the processors by subdividing each dimension in turn until it has the proper
number of subregions. Those axes which are considered for subdivision are the
parallel axes, which means that a given node will only contain Field data for a
subset of the indices along that dimension. You can, however, tell FieldLayout
which axes to subdivide, and which to maintain as serial. Serial axes are not ever
partitioned by FieldLayout. You must have at least on parallel dimension in a
given FieldLayout; by default, all axes are parallel.

To specify serial axes, you provide additional arguments to the FieldLayout
constructor, using the keywords SERIAL or PARALLEL. If you create a new
FieldLayout by just specifying N Index objects, then you may provide up to
N more arguments to the constructor to set the corresponding dimension’s layout
method. For example, we may change the earlier example of a 2D Field to have
the second dimension use a serial layout as follows:
Index I(6), J(6);
FieldLayout<3> Layout(I, J, PARALLEL, SERIAL);

In this case, the data would be partitioned into four subregions like the following
(the horizontal direction is the first dimension, the vertical direction the second)

TODO: BILD
If an NDIndex object is used to create the FieldLayout instead of several

Index objects, to change the default layout style you must instead provide an ar-
ray of keywords (of type e dim tag) specifying the layout for the N dimensions.
For example:
Code Listing
Index I(5), J(9), K(4);
NDIndex<3> Domain(I, J, K);
e_dim_tag ParallelMethod[2];
ParallelMethod[0] = PARALLEL;
ParallelMethod[1] = SERIAL;
ParallelMethod[2] = SERIAL;
FieldLayout<3> Layout(Domain, ParallelMethod);

5.5 Boundary Condition Classes
One of the great frustrations in using data parallel objects is the proper represen-
tation of boundary conditions. Most data parallel environments (such as HPF or

47

V1.0
Draf

t

CMFortran) require that one perform special operations to observe periodic or re-
flected behaviour at the boundary. This requirement obscures the original clarity
of the index notation. You construct Field objects within the IP2L framework
using BConds boundary condition object which defines the behaviour of Field
and Field indexing operations at the boundaries. This makes the same, clear
indexing notation do the right thing under a variety of imposed boundary condi-
tions.

5.5.1 Available Boundary Conditions
IP2L pre-defines classes to represent 6 different forms of boundary conditions:

1. Periodic boundary condition: PeriodicFace

2. Positive reflecting boundary condition: PosReflectFace

3. Negative reflecting boundary condition: NegReflectFace

4. Constant boundary condition: ConstantFace

5. Zero boundary condition (special case of constant): ZeroFace

6. Linear extrapolation boundary condition: ExtrapolateFace

They represent boundary conditions for a single dimension of a (possibly)
multidimensional field, for one “side” (or face) of the mesh along that dimension.
That is, you must specify two boundary condition objects for each dimension of
the Field – one for each face of the mesh along that dimension. These classes
are parametrized on the same four template parameters as Field (see Section
5.1.1); the defaults for Mesh and Centering are UniformCartesian and
Cell. As a further refinement, you may specify boundary conditions for individ-
ual components of multicomponent Field elements such as Vektor.

5.5.2 Using Boundary Conditions With Fields
The BConds class is a container for the individual specialized boundary con-
ditions; this is the argument passed to the Field constructor. A BConds ob-
ject acts very much like an array of boundary conditions: when first created, the
BConds object is empty, and you add new boundary condition objects to it by
treating it as a vector and assigning to its elements. The basic procedure is to con-
struct a BConds object, then construct new or use existing boundary condition
objects (from the list above) to fill it, as illustrated in this example:
Code Listing

48

V1.0
Draf

t

unsigened Dim = 2;
Index I(4), J(4);
BConds<double, Dim> bc;
bc[0] = new PeriodicFace<double, Dim>(0);
bc[1] = new PeriodicFace<double, Dim>(1);
bc[2] = new PeriodicFace<double, Dim>(2);
bc[3] = new PeriodicFace<double, Dim>(3);
Field Layout<Dim> layout(I, J);
Field <double, Dim> A(layout, GuardCellSizes<Dim>(1), bc);

Again, the individual face boundary condition objects (in this example, PeriodicFace)
perform their task for only a single face of the mesh. In this way, there may be dif-
ferent types of boundary conditions in different dimensions. The face boundary-
condition constructors take an unsigned argument designating the face according
the following numbering convention: The integers 0 and 1 apply to the boundaries
of the first coordinate direction where 0 represents the negative face and 1 repre-
sents the positive face. The integers 2 and 3 apply to the boundaries of the second
coordinate direction where 2 represents the negative face and 3 represents the pos-
itive face. This pairing of integers and domains continues into higher dimensions.
The constructors also take optional second and third unsigned parameters to spec-
ify a single Field element component rather than all of them. Refer to the IP2L
User Reference for more details on these classes, and a detailed discussion of how
the various boundary conditions affect Field operations.

5.5.3 Default Boundary Condition
If a Field is constructed with no BConds object specified, the default is for that
Field to have NO boundary conditions. In that case, the boundary conditions
container within the Field is empty. It is possible to add additional boundary
conditions for a specific face to a Field after it has been constructed; to do
so, retrieve the boundary condition container from the Field using the method
Field::getBConds(), and then add new face-specific boundary conditions
to the returned BConds container object as shown in the previous example.

5.6 The GuardCellSizes Class
A GuardCellSizes class, an optional argument to the Field constructor,
represents the maximum separation (in elements) of Field elements which will
be combined in Field expressions. Typically, this reflects the order of finite dif-
ferencing in stencil operations. The primary reason for guard cells is parallelism
– a Field domain-decomposed into multiple subdomains with data from adja-
cent subdomains, so that the stencil operations have all required data locally. The
GuardCellSizes class is parameterized on the unsigned value Dim, which

49

V1.0
Draf

t

represents the number of dimensions of the Field object. This Dim value must
match the corresponding parameter value of the Field object.

The constructor for GuardCellSizes takes either one or two arguments,
which are either unsigned or unsigned*. The one-argument forms specify
the same number of guard layers for all dimensions; the two-argument forms spec-
ify different numbers for the right and left faces; the unsigned forms specify the
same number of layers for all dimensions; and the unsigned* forms specify
different number of layers for the different dimensions:
GuardCellSizes(unsigned s); // Same no. left&right, same for all directions
GuardCellSizes(unsigned *s); // Same no. left&right, value for each direction
// Diff. left&right, same for all directions
GuardCellSizes(unsigned l, unsigned r);
// Diff. left&right, value for each direction
GuardCellSizes(unsigned *l, unsigned *r);

Section 5.7.2, “Using Index Objects with Field’s”, shows examples using
Field indexing to implement stencil operations. It discusses the numbers of
guard layers required by one of the examples.

5.7 Operations on Field Objects

5.7.1 Assignment
A single line of code which contains an assignment operator and a Field on the
left hand side of the assignment operator is called a Field expression. Many
different terms may appear on the right-hand side of a Field expression (or
as the second argument in an assign() call as described below). These in-
clude scalars, Index’s, Field’s and IndexingFields’s. Currently because
of the lack of template member functions in C++ compilers, you must use the
assign() function rather than the operator=:
assign(Lhs, Rhs);

where Lhs and Rhs are Field expressions. When template member functions
become available, you will simply write:
Lhs = Rhs

Refer to the IP2L Users Reference for more details, and examples showing
where you may use operator= and where you must use assign(). The fol-
lowing are examples of legal assignments:
Code Listing
unsigned Dim = 2, int N = 100;
Index I(N), J(N);
FieldLayout<Dim> layout(I, J);
Field<double, Dim> A(layout), B(layout), C(layout);

50

V1.0
Draf

t

A = 2.0;
assign(A, 2.0 + B);
assign(B, A + 2.0);
assign(B[I][J], 3.0 + B[I][J]);
assign(A[I][J], I + A[I][J]/C[I][J]);

For cases where more than one term exists on the right hand side of an assign-
ment, the assign() call must be made. Any combination of scalars, Field’s,
IndexingField’s (indexed Field objects; see Section 5.7.2), and Index’s
can be put as the second argument of the assing() call. The only requirement
in combining terms is that the appearance of an Index object anywhere inside
of an expression requires that all the Field objects contained in the expression
must be indexed. It is not possible to combine Field’s and IndexingField’s
in a single expression. Nor is it possible to combine Field’s and Index objects
in a single expression.

Another intermediate solution to accommodate the lack of member function
templates (and therefore the ability to use the operator= member function with
more than one term on the right hand side of an expression) is the utilization of the
accumulation operators (since this does not require member function templates).
Thus, instead of writing
assign(A, 4.0 + B);

one could write
A = 0.0;
A += 4.0 + B;

This technique can be used with any of the accumulation operators (+=,-=,*=,/=).

5.7.2 Using Index Objects with Field’s
The Field object works intimately with Index objects to perform a wide va-
riety of operations. Use the Index object to specify the access pattern into a
data parallel Field object. Do this by using Index objects inside the brackets
following a Field object as follows:
A[I][J] = B[I][J];

A Field object followed by brackets containing Index objects is called an
IndexingField, because IP2L internally uses an IndexingField class as
the return value for the Field::operator[].

You can use Index objects to initialize a Field with integer range data –
that is, assign to a strided range of Field elements the values of a strided range
of integers multiplied by the element type. This only works of multiplication by
an int is defined for the Field element type, which it is for the intrinsic types
{int, float, double, bool} and the IP2L pre-defined Field element

51

V1.0
Draf

t

classes {Vektor, Tenzor, SymTenzor}. For multidimensional Field’s,
the range of values is replicated along the other dimensions. For example, given a
Field that is size 8 in its first dimension and size 4 in its second dimension, the
code segment
assign(A[I][J], I);

produces the following values in the Field A:

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

(Here, as in subsequent figures like this displaying Field values, the positive
direction of the first coordinate is from left to right and the positive direction for
the second coordinate is from top to bottom.) Likewise, an assignment of the form
assign(A[I],[J], J);

produces

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3

The Index objects used to access ranges of values in a Field object do
not have to be the same Index’s used in constructing the FieldLayout object
used to construct the Field. You can use Index objects of smaller size to access
a subrange of the Field. For example, if we wanted to have an 8 by 8 Field
with zeros everywhere except for a 4 by 4 subregion in the center, the following
code segment would accomplish this goal:
Code Listing
unsigned Dim = 2;
Index I(8), J(8);
Index I2(2,5), J2(2,5);
FieldLayout<Dim> layout(I, J);

52

V1.0
Draf

t

Field<double, Dim> A(layout);
A = 0.0;
A[I2][J2] = 1.0;

This would produce the following values in the Field A:

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

The lower-limiting case range for an Index object is, of course, a single ele-
ment. For this case you can just use an integer constant or variable; the following
assigns a single element of the Field A:
Code Listing
Index I(4), J(4);
FieldLayout<2> layout(I, J);
Field<double,2> A(layout);
A = 0.0;
A[1][1] = 1.0;

The resultant Field A contains the values:

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

The typical use for indexing is stencil operations, using Index expressions
adding or subtracting integer constants to represent the finite differences. This

53

V1.0
Draf

t

amounts to global data transformation upon a Field through the use of Index
operations. For example, if a 4 by 4 Field named A is initialized as follows:
Code Listing
unsigned Dim = 2;
int N = 4;
Index I(N), J(N);
FieldLayout<Dim> layout(I, J);
Field<double, Dim> A(layout, GuardCellSizes<Dim>(1));
assign(A[I][J], I + 1);

then the values in the Field A will be:

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

Now, let’s form another Field, B, and assign to it the value of an IndexingField
of A which represents an indexed operation:
Field<double, Dim> B(layout);
assign(B[I][J], A[I+1][J]);

Here we see that the Field A has been indexed with something other than
a plain Index object. Rather, it has been indexed by an index expression. The
Index objects have been overloaded to allow addition and subtraction by integers
to produce other Index objects. The framework recognizes this operation as
requesting that all the data in A be shifted to the left (along the first dimension in
the negative direction) by 1 position. The Field B contains the values:

2 3 4 0

2 3 4 0

2 3 4 0

2 3 4 0

Indexing operations which access data beyond a Field boundary set the
target positions to zero. For the reminder of this section, we shall assume this

54

V1.0
Draf

t

zero valued boundary condition (which is the default condition when no bound-
ary condition is specified). A variety of boundary conditions can be set on each
boundary of a Field and are discussed in detail in the next section.

The GuardCellSizes object used to construct Field A in this example
must specify at least on guard layer in the 1st dimension, to accommodate the
“+1” in the indexing operation. The one used, GuardCellSizes<Dim>(1)
allows “+/ − 1” indexing (as in a width-one stencil), and also allows width-one
stencils in the 2nd dimension, because the use of the unsigned argument (the con-
stant, 1) specifies one guard layer both left and right for all directions.

Had we wished to shift the Field A down (along the second dimension in
the negative direction) we could have written
assign(B[I][J], A[I][J+1]);

Then the values in the Field B are:

1 2 3 4

1 2 3 4

1 2 3 4

0 0 0 0

You can shift in the positive or negative direction on any Index object used
to index a Field. For example,
Code Listing
unsigned Dim = 2;
int N = 4;
Index I(N), J(N);
FieldLayout<Dim> layout(I, J);
Field<double, Dim> A(layout, GuardCellSizes<Dim>(1));
assign(A[I][J], I + J + 1);

will initialize the values in the Field A to:

1 2 3 4

2 2 4 4

3 4 5 6

4 5 6 7

55

V1.0
Draf

t

and the operation
Field<double, Dim> B(layout);
assign(B[I][J], A[I+1][J-2]);

will produce a Field B with the values:

0 0 0 0

0 0 0 0

3 4 5 0

4 5 6 0

5.7.3 Overloaded operators
IP2L pre-defines a suite of overloaded operators with the Field class. These
include the unary − operator; the binary operators, +, −, ∗, and /; and the ac-
cumulation operators +=, -=, *=, /=. Traits [?] determine the appropriate
casts and promotions of mixed types inside Field. For example, a Field of
int’s added to a Field of double’s would perform the correct promotion of
int to double element by element. As mentioned earlier, the assign operator =
does not work for most cases because of the lack of member function templates.
In addition, the relational operators are not directly available due to conflicts in the
current HP reference STL implementation. This functionality is provided through
the explicit inlined binary function calls:

binary function relationals corresponding relation operator

gt(A, B) A > B

lt(A, B) A < B

ge(A, B) A >= B

le(A, B) A <= B

eq(A, B) A == B

ne(A, B) A! = B

56

V1.0
Draf

t

The return value of these binary relational functions is a conforming Field of
bool’s. Here is an example using binary functional relationals in an expression:
Code Listing
unsigned Dim = 2;
Index I(8), J(4);
FieldLayout<Dim> layout(I, J);
Field<double, Dim> A(layout), B(layout), C(layout);
A = 0.0;
assign(B[I][J], J);
assign(C[I][J], I);
assign(A, lt(B, 2,0)*C);

The resulting Field A contains the values

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

5.7.4 The where() Function
Data parallel simulations often require element-by-element conditionals. The
IP2L framework provides a where functions which reduces to the inlined con-
ditional operator?: for each element of the Field objects passed to the
where() function. The where() function takes three Field arguments:
assign(A, where(B, C, D));

where the Field B’s a Field of bool’s. The value of C is placed into A
everywhere that B is true, and the value of D is placed into A everywhere that B
is false. Thus,
Code Listing
unsigned Dim = 2;
Index I(4), J(4);
FieldLayout<Dim> layout(I, J);
Field<double, Dim> A(layout), B(layout), C(layout);
assign(B[I][J], I - 1);
C = 1.0;
assign(A[I][J], where(lt(B, C), B, C));

leaves the following values in Field A:

57

V1.0
Draf

t

-1 0 1 1

-1 0 1 1

-1 0 1 1

-1 0 1 1

Since where() returns a Field, invocations of where() may be used as
arguments to where(); this allows nested element-by-element conditionals. The
following example code
Code Listing
unsigned Dim = 2;
Index I(4), J(4);
FieldLayout<Dim> layout(I, J);
Field<double, Dim> A(layout), B(layout), C(layout), D(layout);
assign(B[I][J], I - 1);
assign(C[I][J], J - 1);
D = 1.0;
assign(A[I][J], where(lt(B, D), B, where(lt(C, D), C, D)));

leaves the following values in Field A:

-1 0 -1 -1

-1 0 0 0

-1 0 1 1

-1 0 1 1

5.7.5 Mathematical Functions on Field’s
As would be expected of any framework for scientific simulation, all the standard
mathematical operations are included. The unary functions take a Field object
and return a Field object of the same dimension and size where the unary oper-
ation has been performed upon each element of the Field. The binary functions
take two conforming Field’s and apply the function pairwise to each member of
the two Field’s to produce a new conforming Field containing the resultant
values. The following functions, mirroring those in math.h, are available in the
framework for Field operations:
acos, asine, atan, cos, sin, tan, cosh, sinh, tanh,
exp, log, log10, pow, sqrt, ceil, fabs, floor.

58

V1.0
Draf

t

For machines which provide them in math.h, IP2L provides the Field version
of the Bessel, gamma, and error functions
erf, erfc, gamma, j0, j1, y0, y1.

5.7.6 Reduction Operations
IP2L includes several reduction operations with the Field class. These include
determining the maximum and minimum elements of a Field, the global sum
and product of all the elements in a Field, and determining the location of
the minimum and maximum values within a Field (typically called minloc and
maxloc).

WARNING: Currently, these functions are only implemented on Field ob-
jects; they will not work on Field expressions. This means that invocations like
min(A+B) and min(2.0*A) are illegal!

The following exampled code, which demonstrates the usage of these opera-
tors,
Code Listing
unsigned Dim = 2;
Index I(10), J(10);
FieldLayout<Dim> layout(I, J);
Field<double, Dim> A(layout);
assign(A[I][J], I + J);
cout << min(A) << endl;
cout << max(A) << endl;
cout << sum(A) << endl;
cout << prod(A) << endl;

produces the following output:
0
18
900
0

The minloc and maxloc capabilities, rather than being separately named func-
tions, are two-argument forms of the min() and max() functions. The second
argument is an NDIndex<Dim> object, which is a multi-dimensional container
for Index objects. The minloc and maxloc operations fill an NDIndex<Dim>
object with one Index object for each dimension; each Index is of size one,
representing a single point. The following code segment demonstrates:
Code Listing
unsigned Dim = 2;
Index I(10), J(10);
FieldLayout<Dim> layout(I, J);
Field<double, Dim> A(layout);
assign(A[I][J], cos((I-2)*(I-2) + (J-2)*(J-2)));
NDIndex<Dim> LocMin, LocMax;
min(A, LocMin);
max(A, LocMax);

59

V1.0
Draf

t

The NDIndex<Dim> objects LocMin and LocMax now contain the position
(index location) of the minimum and maximum elements of the Field object A.

60

V1.0
Draf

t

Appendix A

Fields

The Field class represents the common computational science abstraction of a
continuum (mathematical) field discretized on a mesh, with some centering on
that mesh. Used in it simplest, default, way with basic-type elements such as dou-
ble’s or float’s. Field serves as a multidimensional array class. Similarly, you can
use collections of simple or not-so-simple instances of the Field class to repre-
sent almost any data structure found in computational science; but this is against
the philosophy of object-oriented design, in which you should design classes to
represent the physics/numerical-mathematics abstractions of the problem domain,
rather than the data structures typically found in computer codes.

A.1 Field Class Definition
The Field class is parameterized on the type T of elements (typically a type like
double,Vektor, or Tenzor), dimensionality, mesh type, and centering on
the mesh:
template<class T, unsigned Dim,

class Mesh=Cartesian,
class Centering=Mesh::DefaultCentering>

class Field : public FieldBase

61

V1.0
Draf

t

A.2 Field Constructors
To instantiate a Field we use the following of Field constructors:
Field(FieldLayout<Dim>&);
Field (FieldLayout<Dim>&, const GuardCellSizes<Dim>&);
Field (FieldLayout<Dim>&, const BConds<T,Dim,Mesh,Centering>&);
Field (FieldLayout<Dim>&, const GuardCellSizes<Dim>&,

const BConds<T,Dim,Mesh,Centering>&);
Field (FieldLayout<Dim>&, const BConds<T,Dim,Mesh,Centering>&,

const GuardCellSizes<Dim>&);

A.3 Field Member Functions and Member Data
IndexingField<T,Dim,l,Mesh,Centering> operator[] (const Index& idx)
IndexingField<T,Dim,l,Mesh,Centering> operator[] (int i)
const iterator& begin() const { return Begin; }
const iterator& end() const { return End; }
void fillGuardCells() ;
const GuardCellSizes<Dim>& getGuardCellSizes() { return Allocated;

// Boundary condition handling.
unsigned leftGuard(unsigned d) { return Allocated.left(d); }
unsigned rightGuard(unsigned d) { return Allocated.right(d); }
const Index&: getIndex(unsigned d) { return Layout˜>get_Domain() [d];
const NDIndex<Dim>& getDomain() {returnLayout->get_Domain();}

// Definitions for accessing boundary conditions.
typedef BCondBase<T,Dim,Mesh,Centering> bcond_value;
typedef BConds<T,Dim,Mesh,Centering> bcond_container;
typedef bcond_container::iterator bcond_iterator;
bcond_value& getBCond(int bC);
bcond_container& getBConds(){return *BC;}

A.4 Operations on Field Objects

A.4.1 Assignment
For the special case where there is only one term on the right-hand side of an
assignment, the assignment operator can be utilized. Examples of single term
assignments include:
unsigned Dim = 2,int N = 100;
Index I (N), J (N) ;
FieldLayout<Dim> layout(I,J)i Field<double,Dim> A(layout) , B(layout);
A = 2.0;
B = A;

For cases where more than one term exists on the right hand side of an assign-
ment, the assign() call must be made. Any combination of scalars, Field’s,
IndexingField’s, and Index’s can be put as the second argument of the

62

V1.0
Draf

t

assign() call. The only requirement in combining terms is that the appear-
ance of an Index object anywhere inside of an expression requires, that all the
Field contained in the expression must be indexed. It is not possible to com-
bine Field’s and IndexingField’s in a single expression. Nor is it possible
to combine Field’s and Index objects in a single expression. The following
examples define legal expressions:
unsigned Dim = 2;
int N = 100;
Index I(N), J(N);
FieldLayout<Dim> layout(I,J);
Field<double,Dim> A(layout) , B(layout) , C.(layout);

assign(A, 2.0 + B);
assign(B , A + 2.0);
assign(B[I][J],3.0+B[I][J]);
assign(A[I][J] , I + A[I][J]/C[I][J]);

The following are examples of illegal expression:
B[I][J] = 3.0 + B[I][J]; // must use assign() with indexed Field˜s,
assign(A, 2.0 + B[I][J]); // can’t combine indexed Band non˜indexed B
assign(B[I][J] , A + 2.0); // can’t combine indexed B and non-indexed A
assign(A[I][J] , I + A/C[I][J]); // can’t combine indexed C ,and non-indexed A

A.4.2 Boundary Conditions
IP2L pre-defines classes to represent 7 different forms of boundary conditions:

1. Periodic boundary condition: PeriodicFace

2. Positive reflecting boundary condition: PosReflectFace

3. Negative reflecting boundary condition: NegReflectFace

4. Constant boundary condItion: ConstantFace

5. Zero boundary condition (special case of constant): ZeroFace

6. Linear extrapalation baundary condition: ExtrapolateFace

7. none (should not be used)

Let’s examine each boundary condition as applied to. the same shift operation.
In each case, the first assign() invocation shows how the Field A with the
following values:

63

V1.0
Draf

t

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6

The results after the second assign() invocation show how the boundary con-
ditions on A affect the calculation. For the first example, consider the case where
each boundary of the Field object A has periodic boundary conditions:
unsigned Dim = 2;
Index 1(4), J(4);
BConds<double,Dim> bc;

bc[0] = new PeriodicFace<double,Dim>(0);
bc[1] = new PeriodicFace<double,Dim>(1);
bc[2] = new PeriodicFace<double,Dim>(2);
be[3] = new PeriodicFace<double,Dim>(3);

FieldLayout<Dim> layout(I,J);
Field<double, Dim> A(layout, GuardCellSizes<Dim> (1) , bc) ;
Field<double,Dim> B(layout);
assign(A[I][J] ,I + J);
assign(B[I][J] ,A[I+l][J+l])

This code segment produces the following values in the Field B:

2 3 4 1

3 4 5 2

4 5 6 3

1 6 3 0

In the case af the periodic boundary conditions, we see that the values wrap around
the domain of the Field and pull values from the opposite side of the Field
when the indexing operations reference positions outside the domain. Note that
the specification of a boundary condition above overrides the default behavior,
which places zeroes into positions that attempt to obtain data from outside the
domain.

Next we consider the case where positive reflecting boundary conditions are
applied to each boundary of the Field object A in the same shift operation:

64

V1.0
Draf

t

bc[0] = new PosReflectFace <double,Dim>(0);
bc[1] = new PosReflectFace <double,Dim>(1);
bc[2] = new PosReflectFace <double,Dim>(2);
be[3] = new PosReflectFace <double,Dim>(3);

assign(A[I][J] ,I+ J);
assign(B[I][J] ,A[I+1][J+1);

This code segment produces the following values in Field B:

2 3 4 4

3 4 5 5

4 5 6 6

4 5 6 6

In the case of the positive reflecting boundary conditions, we see that the values
are simply reflected across the boundary over which the Field indexing oper-
ation occur. This boundary condition is meant to represent Neuman boundary
conditions in physical systems.

Next, consider the case where each boundary of the Field object A has neg-
ative reflecting boundary conditions:
bc[0] = new NegReflectFace <double,Dim>(0);
bc[1] = new NegReflectFace <double,Dim>(1);
bc[2] = new NegReflectFace <double,Dim>(2);
be[3] = new NegReflectFace <double,Dim>(3);

assign(A[I][J] ,I+ J);
assign(B[I][J] ,A[I+1][J+1]);

This code segment produces the following values in Field B:

2 3 4 -4

3 4 5 -5

4 5 6 -6

-4 -5 -6 -6

In the case of the negative reflecting boundary conditions, we see that the values
are simply reflected across the boundary over which the Field indexing opera-
tion occur and negated. This boundary condition is meant to represent Dirichlet
boundary conditions in physical systems.

65

V1.0
Draf

t

Next, consider the case where each boundary of the Field object A has con-
stant boundary conditions:
bc[0] = new ConstantFace <double,Dim>(0,9.0);
bc[1] = new ConstantFace <double,Dim>(1,9.0);
bc[2] = new ConstantFace <double,Dim>(2,9.0);
be[3] = new ConstantFace <double,Dim>(3,9.0);

assign(A[I][J] ,I+ J);
assign(B[I][J] ,A[I+1][J+1]);

Note additional argument to the constantFace constructor. This argument
represents the value which is to be fixed on the boundary in that direction. The
code segment above produces the following values in Field B:

2 3 4 9

3 4 5 9

4 5 6 9

9 9 9 9

In the case of the constant boundary conditions, we see that a fixed value is shifted
into the domain across the boundary over which the Field indexing operation
occur.

Finally, consider the case where the Field object A has mixed boundary
conditions, boundary-by-boundary (i.e., face-by-face):
be[0] = new PeriodicFace <double,Dim>(0);
be[1] = new PeriodicFace <double,Dim>(1);
be[2] = new PosReflectFace <double,Dim>(2);
be[3] = new NegReflectFace <double,Dim>(3);
assign(A[I][J] ,I+ J);
assign(B[I][J] ,A[I+1][J+1]);

The code segment above produces the following values in Field B:

2 3 4 1

3 4 5 2

4 5 6 3

-4 -5 -6 -3

66

V1.0
Draf

t

Appendix B

Index Class

The Index class represents a strided range of integer indices (described by base,
bound, and stride integer values). You use it to define the size (index extent) per
dimension of Field objects on construction and to specify subsets of Field
elements along a dimension in Field expressions.

It is important to note that the actual memory address of an Index object is
relevant to whether that object may be used interchangeably with another Index
object specifying the same index values. In fact, two Index objects specifying
the same index values are not interchangeable. This is qualitatively different than
the semantics of Fortran 90 array-syntax, for example. You may construct a ”new”
Index object with a different name, but which has the same values and is inter-
changeable with a given Index by setting it equal to the first Index object on
construction.

B.1 Index Definition
class Index {
public:
// Public data member -- iterator class: class iterator
{
public:
iterator() : Current (0) , Stride(0) {}
iterator(int current, int stride=l) : Current (current) , Stride(stride){}
int operator*();
iterator operator--(int); // Post decrement iterator& operator--();
iterator operator++(int); // Post increment iterator& operator++();
iterator& operator+=(int);
iterator& operator-=(int);
iterator operator+(int) const;
iterator operator-(int) const;
int operator[] (int);
bool operator==(const iterator &) const;
bool pperator<const iterator &) const;
bool operator!=(const iterator &) const;

67

V1.0
Draf

t

bool operator> (const iterator &) const;
bool operator<=(const iterator &) const;
bool operator>=(const iterator &) const;
private:
int Stride;
intCurrent;
};

// Public member functions.
// Constructors:
Index () ; // null range
inline Index(unsigned n); // [0 .. n-1]
inline Index(int f, int l); // [f .. l]
inline Index(int f, int l, int s); // First to Last using Step.

// Destructor
˜Index () {}; // Don’t need to do anything.

int id () { return 1 ; }

inline int min() const; // the smallest element.
inline int max() const; // the largest element.
inline int length() const; // the number of elems.
inline int stride() const; // the stride.
inline int first() const; // the first element.
inline int last() const; // the last element.
inline bool emty() const; // is it empty?
inline const Index* getBase() const; // the base index

// Additive operations.
friend inline Index operator+ (const Index&, int);
friend inline Index operator+(int,const Index&);
friend inline Index operator˜(const Index&,int);
friend inline Index operator-(int,const Index&);

// Multiplicative operations.
friend inline Index operator-(const’Index&);
friend inline Index operator*(const Index&,int);
friend inline Index operator*(int,const Index&);
friend inline Index operator I (const Index&,int);

// Intersect with another Index.
Index intersect(const Index&) const;

// Plug the base range of one into another.
Index plugBase(const Index &) const;

// Test to see if two indexes are from the same base.
inline bool sameBase(const Index &) const;

// Test to see if there is any overlap between two Indexes.
inline bool touches (const Index& a) const;

// Test to see if one contains another. ,
inline bool contains(const Index& a) const;

// Split one. into two.
inline bool split(Index& I, Index& r) const;

// iterator begin
iterator begin() { return iterator(First,Stride); }

68

V1.0
Draf

t

// iterator end
iterator end () { return iterator (First+Stride*Length, Stride);

// An operator< so we can impose some sort of ordering.
bool operator< (const Index& r) const;

// Test for equality.
bool operator==(const Index& r) const;

static void findPut(const Index&,const Index&, const Index&, Index&, Index&);

// put data into a message to send to another node
Message& putMessage(Message& m);

// get data out from a message
Message& getMessage(Message& m);

// Print it out.
friend ostream& operator<<(ostream& out, const Index& I);
};

B.2 Index Constructors
The constructor for Index takes one, two, or three in arguments. In the case of
three arguments, these represent the base index value, the bounding index value,
and the stride. The two and one-argument cases are simplifications.
Index I(8);

instantiates an Index object representing the range of integers from 0 through 7
(i.e” [0,7]) with implied stride 1. The two-argument
Index J(2,8);

instantiates an Index object representing the range of integers [2,8] with implied
stride 1. The three-argument
Index(1,8,2);

instantiates an Index object representing the range of integers [1,8] with stride 2-
.. that is, the ordered set 1, 3, 5, 7.

Note that the single argument in the one-argument case defines the number of
elements, rather than the bound. This means that Index J(8) , which repre-
sents [0, 7], is different than Index J(0,8) and Index J(0,8,1) , which
both mean [0, 8].

There is also a special special constructor taking no arguments; this is meant
for use in constructing arrays of Index’s.

69

V1.0
Draf

t

B.3 Index Member Functions and Member Data

B.3.1 Index iterator
The only public member data is the Index::iterator class. This class has
the semantics of an STL random access iterator; the advanced user can use it to
iterate over integer index values represented by the containing Index object. The
STL semantics means that the class provides increment and decrement operators,
increment/decrement by specified integer amounts, deference operator, random-
access operator[], and comparison operators. See the class definition in Sec-
tion B.1 for the full list. The iterator class definition is contained within.
iterator begin ()

Returns an Index: : iterator positioned at the beginning of the index
values represented by the Index object.
iterator end ()

Returns an Index::iterator positioned beyond the last index value repre-
sented by the Index object.

B.3.2 Index Query/Accessor Functions
These functions mostly return values of or values computed from private data
members of the Index.
int min () const

Returns the smallest integer value allowed for the Index object.
int max () const

Returns the largest integer value allowed for the Index object.
int length() const

Returns the total number of integer values spanned by the Index object.
int stride()const

Returns the value of the stride for the Index object.
int first() const

Returns the integer value ofthe first element in the Index object.
int last () const

Returns the integer value of the last element the Index object.
bool empty() const

70

V1.0
Draf

t

Returns true/false depending on whether the Index object is empty. Empty (true)
means, that it was constructed with the zero-argument constructor.
const Index* getBase() const

Returns a pointer to the base Index object associated with the Index object.
As described at the beginning of this chapter, the memory address of an Index
is important, and if two Index’s are to be interchangeable they must share the
same base address as well as be conforming (have the same base, bound, and
stride values).

B.3.3 Index Arithmetic operator Functions
Here we describe the arithmetic operator functions defined in the Index class to
act on Index objects. In the example code in these descriptions, I is an Index
object and n is an int.
friend Index operator+(const Index&,int)

The Index expressionI +n invokes this operator. It adds an integer value n to
the base and bound values of I, then constructs and returns the resulting Index
object using those revised values.
friend Index operator+(int,const Index&)

Same as the previous, except for the order of the operands. That is, the Index
expression n+I invokes this operator.
friend Index operator-(const Index&,int)

Invoked by I-n subtracts n from the base and bound of I and returns the result-
ing Index.
friend Index operator-(int,const Index&)

Invoked by n-I subtracts the base of I from n, multiplies the stride by -1,and
returns the resulting Index object.
friend Index operator-(const Index&)

Negation operator, invoked by -1. This multiplies the base and bound of I by -1
and returns the resulting Index object.
friend Index operator*(const Index&,int)
friend Index operator*(int,const Index&)

Invoked by I*n and n*I, respectively. These multiply the base, bound, and
stride of I by n and return the resulting Index object
friend Index operator /(const Index&,int)

Invoked by I/n. These divide the base, bound, and stride of I by n and return
the resulting Index object (integer division, truncates). Note that the division
operator with the operands the other way around (n/I) is not defined.

71

V1.0
Draf

t

B.3.4 Index I/O and Message-Passing Functions
These are functions are to write out an Index object, and to pack/unpack and
send/receive an Index object as a message between two processes.
friend ostream& operator<<(ostream&, const Index&)

Formatted insertion of the contents of an Index object into the output stream.
The interface is the stream I/O operator <<, invoked by os<<I (os is an
ostream object, or a IP2L Inform object).
static void findPut(const Index&, const Index&, const Index&,Index&, Index&)

Need to describe
Message& putMessage(Message&)

Put Index data into a message to send to another node.
Message&getMessage{Message&)

Get Index data out of a message you have received from another node.

B.3.5 Index Comparison Operators

bool operator < const Index&) const;

A less-than test so we can impose some sort of ordering of two Index objects.
The implementation is such that I<J returns true if one of the following is true:
the length of I (number of integer index values represented by I) is less than the
length of J, the length’s are, equal but the first integer index value in I is less than
the first value in J, or (failing either of the first two tests, and given that the length
of I is greater than 0) the stride of I is less than the stride of J.
bool operator == (const Index&) const

Test for equality of two Index objects.I==J returns true if the base,bound,stride
values of I and J are the same. This does not check that the two Index objects
have the same base address .
B.3.6 Index Composition Functions

Index intersect(const Index&) const

I.intersect(J) returns an Index object containing the intersection of I
with J such that it contains all the integer index values contained both in I and J
(expressed as the base,bound,stride of the new Index object).
Index plugBase(constIndex&) const

Plug the base range of one into another.

72

V1.0
Draf

t

inline bool sameBase(const Index&) const

Test to see if two Index’s are from the same base. Internally, Index contains
a (private) Index* which points to the base Index object from which it was
constructed. If it is an Index which was constructed explicitly with one of the
constructors described in Section xxx then this will be a pointer to itself. If you
construct an Index object by arithmetic on an existing, object, the pointer points
to, the existing Index. Example:
Index I(10);
Index J(10);
bool t1 = I.sameBase(J); // false
bool t2 = I.sameBase(I+1); // true

inline bool touches(const Index&) const

Test to see if there is any overlap between two Indexes. I.touches(J) returns
true if the minimum integer value represented by I is less than or equal to the
maximum value represented by J, and the maximum integer value represented by
I is greater than or equal to the minimum value represent by J.
inline bool contains(const Index&) const

Test to see if one Index object completely conntains another. I.contains
(J) returns true if the minimum integer value represented by I is less than or
equal to the minimum value represented by J, and the maximum integer value
represented by I is greater than or equal to the maximum value represented by J.
inlinebool split(Index& 1, Index& r) const

Splits one Index object into two. I.split(J,K) divides the set of integers
represented by I into two halves, and fills the Index object J with the left half
of the set, and the Index object K with the right half of the set.

73

V1.0
Draf

t

Appendix C

FieldLayout Class

The FieldLayout class represents the abstraction of a decomposition of a Field
object into pieces (subsets of elements). The number of pieces need not be, but
typically is, greater than or equal to the number of physical processors or cores
used to run the IP2L program in parallel. This is a decomposition in the sense that
the parallel computing literature talks about domain decomposition. The Field
object represents a mathematical field discretized on a spatial domain, each piece
of it is a subdomain. Equivalent to the actual spatial subdomain is the subset of the
index space of the discretization. Currently in IP2L , these subsets are contigu-
ous, stride-1 subranges of the global (N -dimensional) index space. Other IP2L
mechanisms assign each sub domain to a processor or core. The FieldLayout
class provides mechanisms for specifying decomposition, and has two relation-
ships with the Field class: Field uses a FieldLayout reference and in-
vokes its mechanisms to manage the distribution of its data, and FieldLayout
maintains a container of pointers to all the Field’s it is used by. When the
user requests that a FieldLayout be redistributed, the FieldLayout goes
through its list of Field pointers and tells the Field’ s to effect the redistribution
of their data.

C.1 FieldLayout Definition (Public Interface)

// enumeration used to select serial or parallel axes
enum e_dim_tag { SERIAL=O, PARALLEL=l }

// A base class for FieldLayout that is independent of dimension.

class FieldLayoutBase
{
private:
// Some dummy storage so that it doesn’t confuse purify.
char Dummy;

74

V1.0
Draf

t

public:

FieldLayoutBase() : Dummy(0) {}
};

template<unsigned Dim>
class FieldLayout public FieldLayoutBase {
public:

// Typedefs’for containers.

typedef vmap<Unique::type,my_auto_ptr<Vnode<Dim> > >ac_id_vodes;
typedef DomainMap<NDIndex<Dim>,RefCountedP< Vnode<Dim> >,

Touches<Dim>,Contains<Dim>,
Split<Dim> > ac_domain_vnodes;

typedef vmap<GuardCellSizes<Dim>,my_auto_ptr<ac_domain_vnodes> >
ac_gc_domain_vnodes;

typedef vmap <Unique::type,FieldBase*> ac_id_fields;

// Typedefs for iterators.

typedef ac_id_vodes::iterator iterator_iv;
typedef ac_id_vodes: :const_iterator const_iterator_iv;
typedef ac_domain_vnodes::iterator iterator_dv;
typedef ac_domain_vnodes::touch_iterator touch_iterator_dv;
typedef pair<touch_iterator_dv,touch_iterator_dv> touch_range_dv;
typedef ac_id_fields::iterator iterator_if;
typedef ac_id_fields::const_iterator const_iterator_if;
typedef ac_gc_domain_vnodes: :iterator iterator_gdv;
public:

// Accessors for the locals by Id.
ac_id_vnodes: : size_type size_iv();
iterator_iv begin_iv();
iterator_ivend_iv();
const_iterator_iv begin_iv() const;
const_iterator_iv end_iv() const;

// Accessors for the remote vnode containers.
ac_gc_domain_vnodes::size_type size_rgdv();
iterator_gdv begin_rgdv();
iterator_gdvend_rgdv();

// Accessors for the remote vnodes themselves.
ac_domain_vnodes::size_type size_rdv(const GuardCellSizes<Dim>& gc = gc0()) ;

iterator_dv begin_rdv(const GuardCellSizes<Dim>& gc = gcO());
iterator_dv end_rdv(const GuardCellSizes<Dim>& gc= gcO());
touch_range_dv touch_range_rdv(const NDIndex<Dim>& domain,

const GuardCellSizes<Dim>& gc = gcO());

// Accessors for the fields declared on this
// FieldLayout. ac_id_fields:.: size_type size_if () ;
iterator_if begin_if () ;
iterator_ifend_if();
const_iterator_if begin_if() const;
const_iterator_if end_if() const;

// Tell the FieldLayout that a FieldBase has been declared on it
void checkin(FieldBase&f, const GuardCellSizes<Dim>& gc= gcO());

75

V1.0
Draf

t

// Tell the FieldLayout that a FieldBase is no longer using it.

void checkout(FieldBase& f);

// Compare FieldLayouts to see if they represent the same domain.

bool operator==(const FieldLayout<Dim>& x)
{
return Domain == x.Domain;
}
// Constructors.
// Default constructor, which should only be used if you are going to
// call ’initialize’ soon after (before using in any context)

FieldLayout() { }

//Constructorsfor 1 ... 6 dimensions

FieldLayout(const Index& il, e_dim_tag pl=PARALLEL, int vnodes=-1);

FieldLayout(const Index&il, const Index& i2, e_dim_tag pl=PARALLEL,
e_dim_tag p2=PARALLEL, int vnodes=-1);

FieldLayout(const Index& il, const Index& i2, const Index& i3,
e_dim_tag pl=PARALLEL, e_dim_tag p2=PARALLEL, e_dim_tag p3=PARALLEL, int vnodes=-1);

FieldLayout(const Index& il, const Index& i2, const Index& i3,
const Index& i4, e_dim_tag pi = PARALLEL , e_dim_tag p2 = PARALLEL , e_dim_tag p3=PARALLEL,
e_dim_tag p4=PARALLEL, int vnodes=-1) ;

FieldLayout(const Index& il, const Index& i2, const Index& i3,
const Index& i4, const Index& i5, e_dim_tag pl=PARALLEL, e_dim_tag p2=PARALLEL,
e_dim_tag p3=PARALLEL, e_dim_tag p4=PARALLEL, e_dim_tag p5=PARALLEL, int vnodes=-1) ;

FieldLayout(const Index& il, const Index& i2, const Index& i3,
const Index&i4, const Index& is, const Index& i6, e_dim_tag pl=PARALLEL, e_dim_tag. p2=PARALLEL,
e_dim_tag p3=PARALLEL, e_dim_tag p4=PARALLEL, e_dim_tag pS = PARALLEL ,
e_dim_tag p6=PARALLEL, int vnodes=-1);

// Next we have one for arbitrary dimension.
FieldLayout(const NDIndex<Dim>& domain, e_dim_tag *p==O, int vnodes"=-1)
{ initialize (domain,p,vnodes) ;

//Build a FieldLayout given the whole domain and
//begin and end iterators for the set of domains for the local Vnodes.
//It does a collective computation to find the remote Vnodes.

FieldLayout(const NDIndex<Dim>& Domain, NDIndex<Dim>* begin, NDIndex<Dim>* end);

// initialization functions, for use when the FieldLayout was created using the default constructor.
void initialize(const Index& il, e_dim_tag pl=PARALLEL,int vnodes=-1);

void initialize(const Index& il, const Index& i2, e_dim_tag pl=PARALLEL,
e_dim_tag p2=PARALLEL, int vnodes=-l);

void initialize{const Index& il, const Index& i2. const Index& i3, e_dim_tag pl=PARALLEL,
e_dim_tag p2=PARALLEL, e_dim_tag p3=PARALLEL, int vnodes=-1);

void initialize(const Index& il, const Index&i2, const Index& i3, const.Index& i4,
e_dim_tag pl=PARALLEL, e_dim_tag p2=PARALLEL,
e_dim˜tag p3=PARALLEL, e_dim_tag p4=PARALLEL, int vnodes=-1);

76

V1.0
Draf

t

void initialize(const Index& il,.const Index&, i2, Cbnst Index& i3, const Index& i4,
const Index& is, e_dim_tag pl=PARALLEL,
e_dim_tag p2=PARALLEL, e_dim_tag p3=PARALLELi e_dim_tag p4=PARALLEL,
e_dim_tag pS = PARALLEL , int vnodes=-1);

void initialize(const Index& il, constIndex& i2, const Index& i3, const Inde.x& i4, const Index& is,
const Index& i6, e_dim_tag pl=PARALLEL,e_dim_tag p2=PARALLEL, e_dim˜tagp3=PARALLEL,
e_dim_tag p4=PARALLEL, e_dim_tag p5=PARALLEL, e_dim_tagp6=PARALLEL, int vnodes=-1);

void initialize(const NDIndex<Dim>& domain, e_dim_tag *p=O" int vnodes=-1);

// Let the user set the local vnodes.
// this does everything necessary to realign all the fields associated with this FieldLayout!
// It inputs begin and end iterators for the local vnodes.

void Repartition(NDIndex<Dim>*,NDIndex<Dim>*);

void Repartition(NDIndex<Dim>& domain)
{
Repartition(&domain, (&domain) +1);
}

// Destructor: Everything deletes itself automatically,
// except we must tell all the registered FieldBase’s we’re going away.
˜FieldLayout();

// Return the domain.
constNDIndex<Dim>& getDomain() const { return Domain; }

// Print it out.
void write (ostream&) const;
friend ostream& operator(ostream&, const FieldLayout<Dim>&);
};

C.2 FieldLayout Constructors
FieldLayout is parameterized on (unsigned) dimensionality, having the
same meaning as the dimensionality template parameter for the Field class.
When constructing a FieldLayout object, you must specify the index range
for each dimension (or axis). To do this, you can use a single NDIndex object:
index I(S), J(9), K(4);
NDIndex<3> Domain(l, J, K);
FieldLayout<3> Layout(Domain);

For FieldLayout’s of N dimensions up to six, you may instead specify N
Index objects to the constructor of FieldLayout directly, without creating an
NDIndex object:
Index l(5), J(9), K(4);
FieldLayout<3> Layout (I, J, K);

77

V1.0
Draf

t

C.2.1 Specifying Serial or Parallel Layout
’By default, FieldLayout will attempt to distribute the data among the pro-
cessors (vnodes, actually) by subdividing each dimension in turn until it has the
proper number of subregions. Those axes which are considered for subdivision
are the parallel axes, which means that a given node will only contain Field
data for a subset of the indices along that dimension. You can, however, tell
FieldLayout which axes to subdivide, and which to maintain as serial. Se-
rial axes are not ever partitioned by FieldLayout. You must have at least one
parallel dimension in a given FieldLayout; by default, all axes are parallel.
To specify things, use the predefined enumeration e dim tag, which has values
SERIAL and PARALLEL. When you pass a NDIndex<Dim> as the
FieldLayout constructor argument, you pass an array of e dim tag values,
having length Dim. When you construct a FieldLayout with N Index argu-
ments, you may also include up to N more arguments of type e dim tag to set
the corresponding dimensions layout methods; any omitted dimensions at the end
of the list default to PARALLEL. Refer to the first few chapters of this report for
appropriate examples.

C.3 FieldLayout Member Functions and Member
Data

C.3.1 Access Functions to Containers in FieldLayout
The Index class has several private members whose types are parameterized
container classes patterned after STL containers. These have STL-like semantics,
including iterators. The container objects themselves are private, but the user has
public access to their sizes and iterators over them via Index public member
functions. Index provides some typedef’s to make this access easier:
typedef vmap<unique: type,my_auto_ptr<Vnode<Dim> > > ac_id_vnodes;

Type for FieldLayout’s container of pointers to Vnode objects; the IP2L in-
ternal Vnode class represents the vnode, or index-space subdomain in this con-
text. The number of subdomains is equal to the number of vnodes, and
FieldLayout’ s serial/parallel specification determines the extents of the sub-
domains in Index space.
typedef DomainMap<NDIndex<Dim>,RefCountedP< Vnode<Dim> >,
Touches<Dim>,Contains<Dim>,Split<Dim> > ac_domain_vnodes;
typedef vrnap<GuardCellSi˜es<Dim>, my_auto_ptr<ac_domain_vnodes> > ac_gc_domain_vnodes;

The first of these typedef’s is only used inside the second.
typedef vmap<Unique::type,FieldBase*> ac_id_fields;

78

V1.0
Draf

t

Type for FieldLayout’s container of pointers to Field’s using this FieldLayout
object, mentioned in the general discussion anhe beginning of this chapter.
typedef ac_id_vnodes: :iterator iterator_iv;
typedef ac_id_vnodes: :const_iteratorconst_iterator_iv;
typedef ac_domain_vnodes::iterator iterator_dv;
typedef ac_domain_vnodes::touch_iterator touch_iterator_dv;
typedef pair<touch_iterator_dv,touch_iterator_dv> touch_range_dv;
typedef ac_id_fields::iterator iterator_if;
typedef ac_iQ._fields::const_iterator const_iterator_if;
typedef ac_gc_domain_vnodes::iterator iterator_gdv;

More to come

79

V1.0
Draf

t

Appendix D

CenteredFieldLayout Class

The CenteredFieldLayout class inherits from FieldLayout. It repre-
sents the same abstraction as FieldLayout, except specialized to a particular
type of centering on a particular type of Mesh; it is parameterized on mesh type
and centering type. These template parameters have the same meaning as the cor-
responding parameters for the Field class.
The primary use of CenteredFieldLayout is for guaranteeing correct speci-
fication of numbers of elements in Field’s along the various dimensions accord-
ing to the centering along those dimensions. The Mesh object reference construc-
tor arguments provide for this.

D.1 CenteredFieldLayoutDefinition (Public In-
terface)

template<unsigned Dim, class Mesh, class Centering>
class CenteredFieldLayout : public FieldLayout<Dim> {
public:
//-------------˜--------˜----------------------˜----˜-----------------------
// Constructors from a mesh object only and parallel/serial specifiers.
//--------------------˜---------------------˜-------------------------------
// Constructor for arbitrary dimension with parallel/serial specifier array:
//This one also works if nothing except mesh is specified:

CenteredFieldLayout(Mesh& mesh, e_dim_tag *p=0, int vnoqes=-1);

// Constructors for 1 ... 6 dimenslons with parallel/serial specifiers:

CenteredFieldLayout(Mesh& mesh, e_dim_tag pI, int vnodes=-1);
CenteredFieldLayout(Mesh& mesh, e_dim_tagpI, e_dim_tag p2, int vnodes=-1);
CenteredFieldLayout(Mesh& mesh, e_dim_tag pI, e_dim_tag p2, e_dim_tag p3, int vnodes=-1);
CenteredFieldLayout(Mesh&mesh, e_dim_tag pI, e_dim_tag p2, e_dim_tag p3,
e_dim_tag p4, int vnodes=-1);
CenteredFieldLayout(Mesh&mesh, e_dim_tag pI, e_dim_tag p2, e_dim_tag p3,
e_dim_tag p4, e_dim_tag p5, int vnodes=-1);

80

V1.0
Draf

t

CenteredFieldLayout(Mesh& mesh,e_dim_tag pI, e_dim_tag p2, e_dim_tag p3,
e_dim_tag p4, e_dim_tag p5, e_dim_tag p6, int vnodes=-1);
};

D.2 CenteredFieldLayout Constructors
Here is where CenteredFieldLayout differs from FieldLayout. In-
stead of taking NDIndex& or Index& arguments to specify the numbers of
elements along the various dimensions, the constructors take an argument hav-
ing the type ofthe Mesh template parameter. This might be, for example, a
UniformCartesian object reference. CenteredFieldLayout queries the
mesh object for numbers of grid nodes arid sets up the right number of elements
for subsequent Field objects instantiated to use this CenteredFieldLayout.
There are implementations for Cell, Vert, and Cartesian centerings on
UniformCartesian and Cartesian meshes. If you are not providing a
Mesh object to construct a CenteredFieldLayout, you probably should
be just using simple FieldLayout objects instead, though no harm would be
done by constructing a CenteredFieldLayout with Index/NDIndex ar-
guments via the inherited constructors from FieldLayout. Refer to Appendix
C for more details about FieldLayout. Other than these different constructors,
CenteredFieldLayout is the same as FieldLayout.

81

V1.0
Draf

t

Appendix E

Meshes

IP2L predefines classes to represent Cartesian meshes; these typically serve as the
Mesh template parameter for Field and other classes parameterized on Mesh
type. These classes also provide various mechanism to query mesh geometry
(spacings, cell volumes, etc.) from Mesh objects.

E.1 Mesh Class
The Mesh class is an abstract base class for classes representing computational
meshes. Currently, the base class does nothing it does not even provide any vir-
tual functions, because it is difficult to conceive of commonality among potential
derived meshes as disparate as unstructured and uniform structured meshes (for
example). It does allow writing functions and classes that have Mesh objects
as arguments and members; but, so far, that hasn’t been used even within the
IP2L internal implementation. IP2L predefines the UniformCartesian and
Cartesian classes which inherit from Mesh.

E.1.1 Mesh Definition (Public Interface)

template<unsigned Dim>
class Mesh
{};

E.2 UniformCartesian Class
The UniformCartesian class represents the abstraction of a uniform-spacing
Cartesian mesh discretizing a rectangular region of space. The Mesh has uni-
form spacing in the sense that the mesh spacings (vertex-vertex distances) along
a dimension are the same all along that dimension. The different dimensions

82

V1.0
Draf

t

may have different (single) values for mesh spacing. The Cartesian class (Ap-
pendix E.3) generalizes this to meshes whose spacings vary cell-by-cell along
each dimension. UniformCartesian has mechanisms for returning various
kinds of geometrical information from the mesh: cell-cell and vertex-vertex spac-
ings, nearest mesh vertex positions to a given point in space, and others. Many of
these; such as a function to return the volume of a particular indexed cell in the
mesh, are somewhat redundant, for the uniform case, but make more sense in the
nonuniform case (Cartesian); the interfaces of UniformCartesian and
Cartesian are meant to be as much alike as possible. UniformCartesian
is parameterized on dimensionality Dim, and another parameter MFLOAT. The
MFLOAT parameter specifies the elemental type to use in storing and returning
mesh geometrical information such as spacings and position coordinates. Gener-
ally, this should be a floating-point type, and it defaults to double. Vector values
are represented using Vektor<MFLOAT,Dim>.

E.2.1 UniformCartesian Definition (Public Interface)

template < unsigned Dim, class MFLOAT=double>
class UniformCartesian : public Mesh<Dim>
{);
public:
// Public member data:
unsigned gridSizes[Dim]; // Sizes (number of vertices)
typedef Cell DefaultCentering; // used by Field
Vektor<MFLOAT,Dim> Dvc[1<<Dim]; // Constants for derivatives

bool hasSpacingFields;
BareField<Vektor<MFLOAT, Dim>, Dim>* VertSpacings ;
BareField<Vektor<MFLOAT, Dim>, Dim>* CellSpacings ;

// Public member functions:
// Constructors
UniformCartesian() {}; // Default constructor

// Non-default constructors
UniformCartesian(NDIndex<Dim>& ndi);
UniformCartesian(Index& I);
UniformCartesian(Index& I, Index& J);
UniformCartesian(Index& I, Index& J, Index& K);
// These also take a MFLOAT* specifying the mesh spacings:
UniformCartesian(NDIndex<Dim>& ndi, MFLOAT* delX);
UniformCartesian(Index& I, MFLOAT* delX);
UniformCartesian(Index& I, Index& J, MFLOAT* delX);
UniformCartesian(Index& I, Index& J, Index& K, MFLOAT* delX);
// These further take a Vektor<I:1FLOAT,Dim>& specifying the origin:
UniformCartesian(NDIndex<Dim>& ndi, MFLOAT*delX, Vektor<MFLOAT,Dim>& orig);
UniformCartesian(Index& I, MFLOAT* delX, Vektor<MFLOAT,Dim> orig);
UniformCartesian(Index& I, Index& J, MFLOAT* delX, Vektor<MFLOAT,Dim>& orig) ;
UniformCartesian(Index& I, Index& J, Index& K, MFLOAT* delX, Vektor<MFLOAT,Dim>& orig);

˜UniformCartesian() { }; // Destructor

// Set functions for member data:

83

V1.0
Draf

t

// Create BareField’s of vertex and cell spacingsi allow for specifying
// layouts via the FieldLayout e_dim_tag and vnodes parameters (these
// get passed in to construct the FieldLayout used to construct the BareField’s).

void storeSpacingFields(); // Defaulti will have default layout

// Special cases for 1-3 dimensions, a la FieldLayout ctors
void storeSpacingFields(e_dim_tag pI, int vnodes=-1);
void storeSpacingFields (e_dim_tag pI, e_dim_tag p2’, int vnodes=-l) ;
void storeSpacingFields (e_dim_tag pI, e_dim_tag p2, e_dim_tag p3,int vnodes=-1);

// It Next we have one for arbitrary dimension, a la FieldLayout ctor:
// All the others call this one internally:
void storeSpacingFields(e_dim_tag *p, int vnodes=-1);

// Accessorfunctions for member data:
// Get the origin of mesh vertex positions:
Vektor<MFLOAT,Dim> get_origin();

// Get the spacings of mesh vertex positions along specified direction:
MFLOAT get_meshSpacing(int d);

// Get the cell volume:
MFLOAT get_volume();

// Formatted output of UniformCartesian object:
void print (ostream&);
// Stream formatted output of UniformCartesian object:
friend ostream& operator<<(ostream&, const UniformCartesian<Dim,MFLOAT>&);

// Other UniformCartesian methods

// Volume of single cell indexed by input NDIndex
MFLOAT getCellVolume(NDIndex<Dim>&);

// Field of volumes of all cells: ’ Field<MFLOAT,Dim,UniformCartesian<Dim,MFLOAT>,Cel1>&
getCellVolumeField (Field<MFLOAT, Dim, UniformCartesian<Dim,MFLOAT>,Cell>&);

// Volume of range of cells bounded by verticies specified by inputNDIndex:
MFLOAT getVertRangeVolume(NDIndex<Dim>&);

// Volume of range of cells spanned by input NDIndex (index o’f cells):
MFLOAT getCe//Rangevolume(NDIndex<Dim>&);

// Nearest vertex index to (x,y,z)
NDIndex<Dim>& getNearestVertex(Vektor<MFLOAT,Dim>&);

// Nearest vertex index with all vertex coordinates below (x,y,z):
NDIndex<Dim>& getVertexBelow(Vektor<MFLOAT,Dim>&);

// NDIndex for cell incell-ctrd Field containing the point (x,y,z):
NDIndez<Dim>& getCellContaining(Vektor<MFLOAT,Dim>&);

// (x,y,z) coordinates of indexed vertex: _
Vektor<MFLOAT, Dim> getVertexPosition (NDIndex<Dim>&);

// Field of (x,y,z) coordinates of all vertices:
Field<Vektor<MFLOAT, Dim>, Dim, UniformCartesian<Dim, MFLOAT>, Vert>&
getvertexPositionField(Field<Vektor<MFLOAT,Dim>,Dim, UniformCartesian<Dim,MFLOAT>,Vert>&);

//Vertex-vertex grid spacing of indexed cell:
Vektor<MFLOAT,Dim> getDeltaVertex(NDIndex<Dim>&);

84

V1.0
Draf

t

// Field of vertex-vertex ,grid spacings of all cells:
Field<Vektor<MFLOAT,Dim>,Dim,UniformCartesian<Dim,MFLOAT>,Cell>&
getDeltaVertexField (Field<Vektor<MFLOAT, Dim>, Dim, UniformCartesian<Dim,MFLOAT>,Cell>&);

// Cell-cell grid spacing of indexed vertex:
Vektor<MFLOAT,Dim> getDeltaCell(NDIndex<Dim>&);

// Field of cell-cell grid spacingsof all vertices:
Field<Vektor<MFLOAT, Dim>, Dim,UniformCar,tesian<Dim, MFLOAT>, Vert>&
getDeltaCellField(Field<Vektor<MFLOAT,Dim>,Dim, UniformCartesian<Dim,MFLOAT>,Vert>&);

// Array of surface normals to cells adjoining indexed cell:
Vektor<MFLOAT,Dim>* getSurfaceNormals(NDIndex<Dim>&);

// Array of {pointers to} Fields of surface normals to all cells:
void getSurfaceNormalFields(Field<Vektor<MFLOAT,Dim>,Dim, UniformCartesian<Dim,MFLOAT>,Cell>**);

// Similar functions, but specify the surface normal to a single face, using
// the following numbering convention: 0 means low face of 1st dim, 1 means
// high face of 1st dim, 2 means low face of 2nd dim, 3 means high face of 2nd dim, and so on: ,

Vektor<MFLOAT,Dim> getSurfaceNormal(NDIndex<Dim>&, unsigned);

Field<Vektor<MFLOAT,Dim>,Dim,UniformCartesian<Dim,MFLOAT>,Cell>& getSurfaceNormalField(
Field<Vektor<MFLOAT,Dim>,Dim, UniformCartesian<Dim,MFLOAT>,Cell>&, unsigned);

E.2.2 UniformCartesian Constructors
Aside from the default constructor, which you should not be used if you, don’t
know what it’s there for, there are three categories of UniformCartesian
constructors. All require an argument or set of Dim arguments specifying the
number of mesh nodes along each dimension. The one-argument form takes
an NDIndex<Dim>& to specify this: the length() value of each Index
and the NDIndex represents the number of mesh nodes (vertices); the multi-
argument forms take Dim Index&’s (these are implemented only up to Dim =
3). Warning: be sure to use zero-based, unit-stride NDIndex Index objects;
UniformCartesian should eventually work for other cases, but for now the
implementation doesn’t account for non-zero base or non-unit stride for the index
space spanning the mesh nodes/cells. The first and simplest category of con-
structors has only the size arguments; here are examples of the one-argument and
multi-argument case:
Index I {5} , J {5} , K (5);
NDIndex<3> ndi;
ndi[0] = I; ndi[1] = J; ndi[2] = K;

UniformCartesian<3> umesh1(ndi);
UniformCartesian<3> umesh2(I,J,K);

Both of these UniformCartesian objects will have default mesh spacings
of 1.0 in all directions and an origin (location of first vertex) at (0.0, 0.0, 0.0). The
second category adds specification of the mesh spacings. You create an array of

85

V1.0
Draf

t

type MFLOAT and pass it to the constructor:
double spacings[3] = {1. 0, 1,.0, 2.0}; //double because default of MFLOAT
UniformCartesian<3> umesh3{ndi, spacings);

The umesh3 object has mesh spacings ∆x = 1.0, ∆y = 1.0, and ∆z = 2.0.
We used type double for the array of spacings because we used the default
MFLOAT template parameter value of double when instantiating umesh3. If
we had specified something else, UniformCartesian<3,float>, we would
have had to specify float as the type of the spacings array. The umesh3 object
has a default origin (location of first vertex) at (0:0, 0.0, 0.0).

The third category adds specification of the origin (location of the first ver-
tex). You create a Vektor<MFLOAT, Dim> and pass it as the last constructor
argument:
// Defining spacings and origin, use double because it’s default .of MFLOAT:
double spacings[3] = {1.0,1.0,2.0};
Vektor<double,3> origin;
origin(0) = 5.0; origin(1) = 6.0; origin(2)= 7.0;
UniformCartesian<3> umesh4(ndi, spacings, origin);

The umesh4 object has mesh spacings ∆x = 1.0, ∆y = 1.0, and ∆z = 2.0 and
origin at (5.0,6.0,7.0).

E.2.3 UniformCartesian Member Functions and Member
Data

UniformCartesian Member Data for Sizes and Spacings. There are several-
public data members representing mesh size and spacing information:
unsigned gridSizes[Dim] ;

An array containing the mesh sizes-numbers of vertices along each dimension.
typedef Cell DefaultCentering ;

Used by Field and other classes which are parameterized on Mesh and center-
ing classes and require consistent defaults for both. The general user probably
need never use this member.
Vektor<MFLOAT,Dim> Dvc[1<<Dim] ;

Constants for derivatives in global differential operator functions such as Div().
Again, the general user probably never need know that this is publicly visible.
bool hasSpacingFields ;

Flags whether the user has requested that the mesh object internally allocate and
compute mesh-spacing BareField’s pointed to by VertSpacings and
CellSpacings.

86

V1.0
Draf

t

BareField<Vektor<MFLOAT,Dim>,Dim>* VertSpacings;
BareField<Vektor<MFLOAT,Dim>,Dim>* CellSpacings;

If you invoke the storeSpacingFields() function, UniformMesh will
allocate two BareField’s and fill them with vertex-vertex and cell-cell mesh
spacing values (stored as vectors whose components are the spacings along each
dimension of the cell or shifted cell). These pointers provide public access to
them. The general user can always use the functions like getDeltaVertexField
() to put spacing values into his own Field objects, and this may be the best way
to do this in general. Certain predefined IP2L global functions, such as the Div()
differential operators, might rely on having these BareField’s internally available
from the mesh object associated with the Field’s on which they operator. Note:
These internal BareField’s are redundant for UniformCartesian in a cou-
ple of ways. First, the mesh spacing information is the same everywhere in the
Mesh, and the vertex-vertex spacing is the same as the cell-cell spacing. The oper-
ators like Div() don’t need BareField’s of spacings for the uniform Cartesian
case; and they don’t, in fact, use them or check if they exist. Both of these redun-
dancies are removed in the nonuniform Cartesian case, however. In this case,
storing this information in the internal BareField’s in the Cartesian objects is
essential for functions like Div() -they return errors if hasSpacingFields is
false.

E.2.4 UniformCartesian Set/Accessor Functions for Mem-
ber Data

void storeSpacingFields ();
void storeSpacingFields(e_dim_tag pI, int vnodes=-I)
void storeSpacingFields(e_dim_tag pl, e_dim_tag p2, int vnodes=-1);
void storeSpacingFields(e_dim_tag pI, e_dim_tag p2, e_dim_tag p3, int vnodes=-1);
void storeSpacingFields(e_dim_tag *p, int vrlodes=-1);

The UniformCartesian class will optionally create internal BareField’s
of appropriate sizes and fill them with vertex-vertex arid cell-cell spacing values.
You access these BareField’s via the VertSpacings and CellSpacings
pointers described above. The storeSpacingFields() functions make this
happen. Because they are constructing BareField’s, they provide prototypes
based on those for FieldLayout so you can control the serial/parallel layout
of the BareField’s, you specify which dimensions are serial or parallel using
lists or an array of e dim tag values (SERIAL or PARALLEL). If you use the
first prototype, with no arguments, you will get the default FieldLayout for
the internal BareField’s: parallel for all dimensions.
Vektor<MFLOAT,Dim> get_origin();

87

V1.0
Draf

t

Returns the value of the origin of the mesh (position in space of the lowest mesh
vertex).
MFLOAT get_meshSpacing(int d);

Returns the mesh spacing value for the specified direction. There is only one value
for uniform spacing; thus the return type MFLOAT.
MFLOAT get_volume() ;

Returns the volume of a cell, which is the same everywhere in a uniform Cartesian
mesh.
E.2.5 Other UniformCartesian Methods
Most of the public member functions in UniformCartesian are designed to
return some typical kinds of geometrical information about the Mesh that a user
(programmer or class) might want. Where the information or input parameters
are more complex than single MFLOAT values, the function return values or ar-
guments are typically IP2L classes such as Field. The set of functions evolved
from general discussions among application programmers of, what is expected of
a mesh, and we will continue to evolve its design iteratively as new applications
demand new Mesh information. Many of these functions use NDIndex to index
mesh vertices and cells. NDIndex has no intrinsic awareness of centering, but
can clearly represent index values specifying mesh node or cell positions. The
user must keep in mind that cell 0 along a dimension is between node 0 and node
1, and that there are one fewer cells than vertices.
MFLOAT getCellVolume(NDIndex<Dim>&);

Volume of single cell indexed by input NDIndex. The argument must describe
a single element. That is, the range of every Index in the NDIndex must be 1.
The getCellVolume() function returns an error otherwise.
Field<MFLOAT,Dim,UniformCartesian<Dim,MFLOAT>, Cell>&
getCellVolumeField (Field<MFLOAT, Dim, UniformCartesian<Dim,MFLOAT>,Cell>&);

Field of volumes of all cells. This function basically assigns every element of
the cell-centered Field to the return value of getCellVolume (). For a
UniformCartesian mesh, this is obviously redundant, but the function is
here for interface compatibility with Cartesian (which represents a nonuni-
form Cartesian mesh, for which this is not redundant). If you are only using
UniformCartesian mesh objects, you should just use the single cell-volume
value retuned by getCellVolume; this will combine with other Field’s of
values in your code the same way any scalar value will do.
MFLOAT getVertRangeVolume(NDIndex<Dim>&);

88

V1.0
Draf

t

Volume of range of cells bounded by vertices specified by input NDIndex, which
in this context will generally have a range greater than one in at least one dimen-
sion. The vertices represented by the lowest and highest index value set contained
in the NDIndex mark the corners of a rectangular solid region; this function re-
turns the volume of that region.
MFLOAT getCellRangevolume(NDIndex<Dim>&);

Volume of range of cells spanned by input NDIndex (index of cells). This is like
getVertRangeVolume() , except that the corners of the rectangular solid
are cell-center positions rather than vertex positions.
NDIndex<Dim>& getNearestvertex(Vektbr<MFLOAT,Dim>&);

Nearest vertex index to a point in space (x,y,z).
NDIndex<Dim>& getVertexBelow(Vektor<MFLOAT,Dim>&);

Nearest vertex inpex with all vertex coordinates below a point in space (x,y,z).
NDIndex<Dim>& getCellContaining(Vektor<MFLOAT,Dim>&) ;

NDIndex for the mesh cell containing the point (x,y,z). Use this, for example, to
index a corresponding element in a cell-centered Field.
Vektor<MFLOAT,Dim> getVertexposition(NDIndex<Dim>&) ;

(x,y,z) coordinates of the Mesh vertex indexed by the NDIndex, which just have
a range of one in all dimensions (that is, it must index a single point in index
space).
Field<Vektor<MFLOAT, Dim>, Dim, UniformCartesian<Dim,MFLOAT>,Vert>&
getVertexPositionField(Field<Vektor<MFLOAT, Dim>, Dim, UniformCartesian<Dim,MFLOAT>,Vert>&);

Fills a vertex-centeredField with the (x,y,z) coordinates of all mesh vertices.
Vektor<MFLOAT, Dim> getDeltaVertex (NDIndex<Dim>&);

Vertex-vertex grid spacing (∆x,∆y,∆z) of the cell indexed by the NDIndex.
Field<Vektor<MFLOAT, Dim>, Dim, UniformCartesian<Dim,MFLOAT>,Cell>&
getDeltaVertexField(Field<Vektor<MFLOAT,Dim>,Dim, UniformCartesiap<Dim,MFLOAT>,Cell>&);

Fills a cell-centered Field with the vertex-vertex grid spacings (∆x,∆y,∆z) of all
cells.
Vektor<MFLOAT,Dim> getDeltaCell(NDIndex<Dim>&) ;

Cell-cell grid spacing (∆x,∆y,∆z) of indexed cell vertex. That is, this returns the
distance between the cell centers on either side of the vertex position indexed by
the NDIndex for each dimension.
Field<Vektor<MFLOAT, Dim>, Dim,uniforrnCartesian<Dim, MFLOAT>, Vert>&
getDeltaCellField(Field<Vektor<MFLOAT,Dim>,Dim, UniformCartesian<Dim,MFLOAT>,Vert>&) ;

89

V1.0
Draf

t

Fills a vertex-centered Field with,the cell-cell grid spacings (∆x,∆y,∆z) around
all vertices.
Vektor<MFLOAT,Dim>* getSurfaceNormals(NDIndex<Dim>&) ;

Array of surface normals to cells adjoining indexed cell. This is trivial for a Carte-
sian mesh, and is the same for every cell even in the nonuniform spacing cases rep-
resented by Cartesian. Future implementations in non-cartesian mesh classes
would be more complicated.
void getSurfaceNormalFields(Field<Vektor<MFLOAT,Dim>,Dim, UniformCartesian<Dim,MFLOAT>,Cell>**);

Fills the Field’s pointed to by the array with of surface normals to all cells. Again,
this is trivial for a cartesian mesh, and the values are the same everywhere; but
future implementations in non-cartesian meshes would be more complicated.
Vektor<MFLOAT,Dim> getSurfaceNormal(NDIndex<Dim>&, unsigned) ;

Field<Vektor<MFLOAT,Dim>,Dim, UniformCartesian<Dim,MFLOAT>,Cell>&
getSurfaceNormalField(Field<Vektor<MFLOAT,Dim>,Dim,

UniformCartesian<Dim,MFLOAT>,Cell>&, unsigned) ;

Similar functions to getSurfaceNormals() and getSurfaceNormalFields(),
but specify the surface normal to a single face, using the following numbering con-
vention: 0 means low face of 1st dimension, 1 means high face of 1st dimension,
2 means low face of 2nd dimension, 3 means high face of 2nd dimension; and so
on.

E.3 Cartesian Class
The Cartesian class represents the abstraction of a nonuniform-spacing Carte-
sian mesh discretizing a rectilinear region of space. The mesh spacings vary cell-
by-cell along each dimension. As much as possible, the Cartesian interface is
identical to the UniformCartesian interface described in Section xxx. It has
the same mechanisms for returning various kinds of geometrical information from
the Mesh: cell-cell and vertex-vertex spacings, nearest mesh vertex positions to
a given point in space, and others. Like UniformCartesian, Cartesian
is parameterized on dimensionality Dim, and another parameter MFLOAT which
specifies the elemental type to use in storing and returning mesh geometrical
information such as spacings and position coordinates. Generally, this should
be a floating-point type, and it defaults to double. Vector values are repre-
sented using Vektor<MFLOAT,Dim>. This chapter only discusses the places
where the Cartesian interface differs from the UniformCartesian inter-
face. Refer to Section xxx for all other information about Cartesian; substitute
”Cartesian” for ”UniformCartesian” in places such as the Mesh param-
eter for Field arguments to the member functions. To help with this, we show

90

V1.0
Draf

t

the entire Cartesian public definition in the next section; in the subsequent
sections discussing the member functions and data, we discuss only the cases that
differ from UniformCartesian.

E.3.1 Cartesian Definition (Public Interface)
Enumeration used for specifying mesh boundary conditions. Mesh BC are used
for things like figuring out how to return the mesh spacing for a cell beyond the
edge of the physical mesh, as might arise in stencil operations lion Field’s on the
mesh.

enum MeshBC_E { Reflective, Periodic, None };
char* MeshBC_E_Names"[3] = {"Reflective", "Periodic ", "None"} ;

template < unsigned Dim, class MFLOAT=double>
class Cartesian : public Mesh<Dim>
{
public:
// Public member data:
unsigned gridSizes[Dim]; // Sizes (number of vertices)
typedef Cell DefaultCentering; //Default cemtering (used by Field,etc.)
Vektor<MFLOAT,Dim> Dvc[1<<Dim]; // Constants for derivatives.

bool hasSpacingFields; // Flags allocation of the following:
BareField<Vektor<MFLOAT,Dim>, Dim>* VertSpacings;
BareField<Vektor<MFLOAT, Dim>, Dim>* CellSpacings;

// Public member functions:
// Constructors
Cartesian() {} ; // Default constructor

// Non-default constructors
Cartesian (NDIndex<Dim>& ndi);
Cartesian(Index& I);
Cartesian(Index& I; Index& J);
Cartesian(Ihdex& I, Index& J, Index& K);

// These also take a MFLOAT** specifying the mesh spacings:
Cartesian(NDIndex<Dim>& ndi, MFLOAT** delX);
Cartesian(Index& I, MFLOAT** delX);
Cartesian(Index& I, Index& J, MFLOAT**deIX);
Cartesian(Index& I, Index& J, Index& K, MFLOAT** deIX);

// These further take a Vektor<MFLOAT,Dim>& specifying the origin:
Cartesian(NDIndex<Dim>& ndi, MFLOAT** deIX,Vektor<MFLOAT,Dim>& orig);
Cartesian(Index& I, MFLOAT** delX, Vektor<MFLOAT,Dim> orig);
Cartesian (Index& I, Index& J, MFLOAT* * delX, Vektor<MFLOAT ,Dim>& orig) ;
Cartesian(Index& I, Index& J, Index& K, MFLOAT** delX, Vektor<MFLOAT,Dim>& orig);

// These further take a MeshBC_E array specifying mesh boundary conditions,
Cartesian(NDIndex<Dim>& ndi, MFLOAT** delX, Vektor<MFLOAT,Dim>& arig, MeshBC_E* mbc);
Cartesian (Index& I, MFLOAT* * deIX, Vektor<MFLOAT, Dim> arig, MeshBC_E* mbc);
Cartesian(Index& I, Iridex& J, MFLOAT** delX, Vektor<MFLOAT,Dim>& orig, MeshBC_E* mbc);
Cartesian(Index& I, Index& J, Index& K, MFLOAT** delX, Vektor<MFLOAT,Dim>& arig, MeshBC_E* mbc);
-Cartesian () { };

91

V1.0
Draf

t

Set functions for member data: create BareField’s of vertex and cell spac-
ings; allow for specifying layouts via the FieldLayaut e dim tag and vn-
odes parameters (these get passed by constructing the FieldLayaut and used
to, construct the BareField’ s) .

void stareSpacingFields(); // Default will have default layaut

// Special cases far 1-3 dimensians, ala FieldLayaut ctars:
void stareSpacingFields(e_dim_tag p1; int vnodes=-1);
void stareSpacingFields (e_dim_tag pl, e_dim_tag p2, int vnodes=-1);
void stareSpacingFields(e_dim_tag p1, e_dim_tag p2, e_dim_tag p3, int vnodes=-1);

// Next we have ane far arbitrary dimensian,a la FieldLayaut ctor:
// All the others call this one internally:
void storeSpacingFields(e_dim_tag *p, int vnodes=-1);

// Accessar functians far member data:
// Get the arigin of mesh vertex pasitians:
Vektor<MFLOAT,Dim> get_orgin();

// Get the spacings of mesh vertex positions along specified direction:
MFLOAT* get_meshSpacing(int d);

// Get mesh boundary conditions:
MeshBC_E get_MeshBC(unsigned face); // One face at a time
MeshBC_E* get_MeshBC () ; // All faces at ance

// Formatted output of Cartesian object:
void print(ostream&);

// Stream formatted output of Cartesian abject:
friend ostream& operato<<(ostream&, const Cartesian<Dim,MFLOAT>&);

// Other Cartesian methods

// Volume of a single cell indexed by input NDIndex
MFLOAT getCellVolume(NDIndex<Dim>&);

// Field of Volumesof of all cells
Field<MFLOAT,Dim,Cartesian<Dim,MFLOAT>, Cell>& getCellVolumeField(
Field<MFLOAT,Dim,Cartesian<Dim,MFLOAT>,Cell>&);

// Volume of range of cells bounded by verticies specified by input NDIndex:
MFLOAT getVertRangeVolume (NDIndex<Dim>&);

// Volume of range of cells spanned by input NDIndex (index of cells)
MFLOAT getCellRangeVolume(NDIndex<Dim>&);

// Nearest vertex index to, (x,y,z)
NDIndex<Dim>& getNearestVertex (Vektor<MFLOAT, Dim>&);

// Nearest vertex index with all vertex coordinates below (x,y, z)
NDIndex<Dim>& getVertexBelow(Vektor<MFLOAT,Dim>&);

// NDIndex for cell in cell-ctrd Field containing the point (x,y, z)
NDIndex<Dim>& getCellContaining(Vektor<MFLOAT,Dim>&);

// (x,y,z) coordinates of indexed vertex
Vektor<MFLOAT,Dim> getVertexPosition(NDIndex<Dim>&);

92

V1.0
Draf

t

// Field of (x,y,z) coordinates of all vertices:
Field<Vektor<MFLOAT,Dim> ,Dim, Cartesian<Dim,MFLOAT>,Vert>& getVertexPositionField(
Field<Vektor<MFLOAT,Dim>, Dim, Cartesian<Dim,MFLOAT>,Vert>&);

// Vertex-vertex grid spacing of indexed vertex
Vektor<MFLOAT,Dim> getDeltaVertex(NDIndex<Dim>&);

// Field of vertex-vertex grid spacings of all vertices
Field<Vektor<MFLOAT,Dim> ,Dim, Cartesian<Dim, MFLOAT> , Cel 1>& getDeltaVertexField(
Field<Vektor<MFLOAT,Dim>, Dim, Cartesian<Dim,MFLOAT>,Cell>&);

// Cell-cell grid spacing of indexed cell:
Vektor<MFLOAT,Dim> getDeltaCell(NDIndex<Dim>&);

// Field of cell-cell grid spacings of all vertices:
Field<Vektor<MFLOAT,Dim>, Dim, Cartesian<Dim,MFLOAT>,Vert>& getDeltaCellField(
Field<Vektor<MFLOAT,Dim>,Dim, Cartesian<Dim,MFLOAT>,Vert>&);

// Array of surface normals to cells adjoining indexed cell:
Vektor<MFLOAT,Dim>* getSurfaceNormals(NDIndex<Dim>&);

// Array of (pointers to) Fields of surface normals to all cells:
void getSurfaceNormalFields(Field<Vektor<MFLOAT,Dim>,Dim, Cartesian<Dim,MFLOAT>,Cell>**);

Similar functions, but specify the surface normal to a single face, using the fol-
lowing numbering convention: 0 means low face of 1st dim, 1 means high face of
1st dim, 2. means low face of 2nd dim, 3 means high face of 2nd dim, and so on:
Vektor<MFLOAT,Dim> getSurfaceNormal(NDIndex<Dim>&, unsigned);
Field<Vektor<MFLOAT,Dim>,Dim, Cartesian<Dim, MFLOAT> , Cel 1>& getSurfaceNormalField(
Field<Vektor<MFLOAT,Dim>,Dim, Cartesian<Dim,MFLOAT>,Cell>&, unsigned);
} ;

E.3.2 Cartesian Constructors
Aside from the default constructor, which you should not be using if you don’t
know what it’s there for, there are four categories of Cartesian constructors.
The first three are the same as for UniformCartesian (see Section xxx),
except that specifying mesh spacings requires more than just a single MFLOAT
value for Cartesian(). You must pass in an array of arrays of MFLOAT val-
ues (MFLOA T * *) one array for each dimension, having size given by the
number of cells along that dimension. The new fourth constructor category adds
specification of mesh-spacing boundary conditions. You create an array of type
MeshBC E, an enumeration having values {Reflective,Periodic,None}.
This tells Cartesian how to provide geometry information such as mesh spac-
ings beyond the physical edge of the mesh, as might arise in implementing differ-
ential operators using finite differencing of Field’s centered on the mesh. There
are basically only two ways to do this: wrap around periodically to mesh spac-
ing values inside the physical mesh, or reflect the mesh spacing values across the

93

V1.0
Draf

t

boundary. The user should avoid specifying None for mesh boundary-condition
types. The following code example illustrates using this fourth constructor cate-
gory for Cartesian(), and how to set up mesh spacing and boundary condition
specifiers:

const unsigned Dim = 3U;
unigned nx=5, ny=5, nz=5;
Index I(nx),J(nz) ,K(nz);

NDIndex<Dim> ndi;
ndi[0] = I; ndi[1] = J; ndi[2] =K;

// Defining spacings and origin, use double because it’s default of MFLOAT:
double* spacings[Dim];
spacings[0] = new double [nx] ;
spacings[1] = new double [ny] ;
spacings[2] = new double [nz];

int vert;
for (vert=0; vert < nx; vert++) (delX[0]) [vert] = 1.0 + vert*1.0;
for (vert=0; vert < ny; vert++) (delX[1]) [vert] = 2.0 + vert*2.0;
for (vert=0; vert < nz; vert++) (delX[2]) [vert] = 3.0 + vert*3.0;

Vektor<double,Dim> origin;
origin(0) = 5.0;
origin(1) = 6.0;
origin(2) = 7.0’

MeshBC_E meshbc[2*Dim];

for (unsigned face=0; face < (2*Dim); face++)
meshbc[face] =Reflective;

Cartesian<Dim> cmesh(ndi, ,spacings, origin, meshbc);

The cmesh object has mesh spacings ∆x = 1., 2., . . .,∆y = 2., 3., . . . and ∆z =
3., 6., . . . the origin is at (5.0, 6.0, 7.0) and reflective mesh boundary conditions
on all faces. The other three cases of Cartesian () are like this but with
fewer parameters. As in UniformCartesian, if the origin is unspecified it
defaults to (0,0,0), if the mesh spacings are unspecified they default to uniform
values of 1.0 for all cells along all axes. The mesh boundary conditions default to
Reflective on all faces.

E.3.3 Cartesian Member Functions and Member Data
Cartesian Member Data for Sizes and Spacings

The types are all the same as for UniformCartesian (See Appendix E.2).
The values of and interpretation of the Dvc data member are completely differ-
ent; functions such as Div()which use this information to implement differential
operators must account properly for the variation of mesh spacing values and the
difference between cell-cell and vertex-vertex spacings in the nonuniform case.

94

V1.0
Draf

t

For UniformCartesian, the single Dvc array could hold all the necessary in-
formation; for Cartesian, a slightly different Dvc coordinates with VertSpac-
ings and CellSpacings, which must exist before the user can invoke operators such
as Div().

Cartesian Set/Accessor Functions for Member Data

Except for the return value of get meshSpacing() , and the new functions
get MeshBC() ,the interfaces and descriptionsare all the same as for
UniformCartesian. (See Appendix E.2).
MFLOAT* get_meshSpacing(int d);

Returns the array of mesh-spacing values along the specified direction. The num-
ber of elements in the arrays the number of cells in the mesh along that dimension.
MeshBC_Eget_MeshBC (uns,igned face) ;

Returns the value of the mesh boundary-condition specifier for the requested face
of the mesh. The numbering convention for faces is: 0 means low face of 1st di-
mension, 1 means high face of 1 st dimension, 2 means low face of 2nd dimension,
3 means high face of 2nd dimension, and so on.
MeshBC_E* get_MeshBC();

Returns the array of values of mesh boundary-condition specifiers for all faces of
the Mesh, following the numbering convention described in the description of the
one-argument prototype of this function above. The number of elements in the
array is two times the number of dimensions.

Other Cartesian Methods

As for UniformCartesian, most of the public member functions in Cartesian
are designed to return some typical kinds of geometrical information about the
mesh that a user (programmer or class) might want. So far, all of the mem-
ber functions mirror UniformCartesian exactly, except for the occasional
replacement of
”Cartesian” for ”UniformCartesian” in mesh template-parameters for
Field arguments.

95

V1.0
Draf

t

Appendix F

Centering

Classes in this chapter represent the abstraction of centering at particular positions
on a Mesh. For any type of mesh, vertex (mesh-node) centering is well-defined.
For Cartesian meshes, cell centering is well defined, because each rectangular
mesh cell has a well-defined center, the midpoint along each dimension. Also,
for Cartesian meshes, combinations of cell and vertex centering along the var-
ious dimensions clearly define common centerings such as face centering and
edge centering. IP2L predefines classes for cell and vertex centering, as well
as classes to represent all possible combination centerings for Cartesian meshes.
These classes are all static in the current implementation (you do not instantiate
objects of the class types, you just refer to the centerings by class name). The
centering classes typically serve as the centering template parameter for Field and
other IP2L classes parameterized on centering.

F.1 Cell Class
The static Cell class represents the abstraction of cell-centering of something on
a Mesh. That ”something” is usually a Field. Cell can serve as a value for
the Centering template parameter of the Field class. Every Field element,
whatever its type, is centered at the position of the corresponding cell center in
the Mesh using the same index space for mesh cell centers as (or the Field ele-
ments. If the Field elements (T parameter for Field class) is some kind of multi
component type such as Vektor, the whole object of that type in every Field
element is cell-centered (that is, all components have the same centering). The
CartesianCentering class allows you to center components of Field ele-
ments independently. If you center a Field on a Mesh using Cell, you must
make sure that you construct the Field to have the proper number of elements
so that it has one-for every cell in the mesh. When you use Field constructors

96

V1.0
Draf

t

taking a Mesh object argument (instance’ of the class specified as the Mesh tem-
plate parameter for Field), the extents of the NDIndex object or index field
constructor arguments match those used to instantiate that Mesh. When you in-
stantiate a Field with Cell centering using constructors without a mesh object
argument, the internally-constructed mesh object will automatically have the right
number of cells. subsectionCell Definition (Public Interface)
class Cell {
public:

static char* CenteringName ;
static void print_Centerings(ostream&) ;

};

F.1.1 Cell Constructors
Cell is a static class you don’t instantiate objects, but rather only refer to it by
its class name.

F.1.2 Cell Member Functions and Member Data

static char* CenteringName;

Public data member, having static value ”Cell”.
static void print_Centerings(ostream&) ;

Invoked as Cell::printCenterings(ostream&) prints the value of the
string Cell::CenteringName.

F.2 Vert Class
The static Vert class represents the abstraction of vertex-centering of something
on a mesh. That ”something” is usually a Field. Vert can serve as a value for
the Centering template parameter of the Field class. Every Field element,
whatever its type, is centered at the position of the corresponding vertex center in
the mesh-using the same index space for Mesh vertex centers as for the Field
elements. If the Field elements (T parameter for Field class) is some kind
of multicomponent type such as Vektor, the whole object of that type in every
Field element is vertex-centered (that is, all components have the same center-
ing). The CartesianCentering class allows you to center components of
Field elements independently. If you center a Field on a Mesh using Vert,
you must make sure that you construct the Field to have the proper number of
elements so that it has one for every vertex in the mesh. When you use Field
constructors taking a mesh object argument (instance of the class specified as the
Mesh template parameter for Field), the extents of the NDIndex object or

97

V1.0
Draf

t

Index Field constructor arguments match those used to instantiate that Mesh.
When you instantiate a Field with Vert centering using constructors without a
mesh object argument, the internally constructed mesh object will automatically
have the right number of vertices.

subsectionVert Definition (Public Interface)
class Vert {
public:

static char* CenteringName;
static void print_Centerings(ostream&);

} ;

F.2.1 Vert Constructors
Vert is a static class you don’t instantiate objects, but rather only refer to it by
its class name.

F.2.2 Vert Member Functions and Member Data

static char* CenteringName;

Public data member, having static value ”Vert”.
static void print_Centerings(ostream&) ;

Invoked as Vert::printCenterings(ostream&) prints the value of the
string Vert::CenteringName.

F.3 CommonCartesianCenterings Class
The static CommonCartesianCenterings class is a wrapper class for commonly-
used special cases ofthe CartesianCentering class, predefinedby IP2L as a
convenience for the user. Basically, it is a collection of typedef’s.
CartesianCentering is a parameterized static class representing the abstrac-
tion of componentwise centering of a multicomponent object (typically a Field)
on a cartesian mesh. Via the template parameters, the user specifies the centering
of the various components along the various directions. See next section for more
details. CommonCartesianCenterings provides a, shorthand definition for
some of the common cases expressible by CartesianCentering.
Also shown in the definition of CommonCartesianCenterings below are
the CenteringEnum which it uses and the static wrapper class
commonCartesianCenteringEnums. This last class contains the special-
case arrays of CenteringEnum values (CELL or VERT) which represent the
various centerings for various specializations of the template parameters.
CommonCartesianCenterings parameterized on dimensionality Dim, which

98

V1.0
Draf

t

has the same meaning as the dimensionality parameter in Field or UniformCartesian
(for example).

The unsigned value NComponents and the unsigned value Direction.
NComponents represents the number of components in a multicomponent ob-
ject to be centered on the mesh, for example, if you are centering a Field<Vektor<double,
3U> ,the number of components is three. Direction represents a specifying direc-
tion, and is only really used in some of the CommonCartesianCenterings
members. For example, to specify face centering of a scalar field (or single com-
ponent of a non-scalar field), you must specify which direction is perpendicular to
the faces where you are centering. If you wanted to center a scalar field on the xy
faces in 3D, you would use the value 2U for Direction; because the xy faces
are perpendicular to the z direction (the directions are numbered sequentially, x is
0U, y is 1U, and z is 2U).

F.3.1 CommonCartesianCenteringsDefinition (Public In-
terface)

enum CenteringEnum {CELL=0, VERTEX=1, VERT=1};

template<unsignedDim, unsigned NComponents=1U, unsigned Direction=0U>
class CommonCartesianCenteringEnums
{
public:
// CenteringEnum arrays Classes with simple, des’criptive names

// All components of Field cell-centered in all directions:
static CenteringEnum allCell [NComponents*Dim] ;

// All components of Field vertex-ceritered in all directions:
static CenteringEnum allVertex[NComponents*Dim] ;

// All components of Field face-centered in specified
// direction (meaning vertex centered in that direction, cell-centered in others):
static CenteringEnum allFace[NComponents*Dim];

// All components of Field edge-centered along specified direction
// (cell centered in that direction, vertex-centered in others):
static CenteringEnum allEdge[NComponents*bim];,

// Each vector component of Field face-centered in the corresponfing direction
staticCenteringEnum vectorFace[NComponents*Dim];
} ;

template<unsigned Dim, unsigned NComponents=1U, unsigned Direction=0U>
class CommonCartesianCenterings
{
public:
typedef CartesianCentering<CommonCartesianCenteringEnums<Dim,NComponents,
Direction>::allCell, Dim, NComponents> allCell;
typedef CartesianCentering<CommonCartesianCenteringEnums<Dim,NComponents,
Direction>::allVertex, Dim, NComponents> allVertex;

99

V1.0
Draf

t

typedef CartesianCentering<CommonCartesianCenteringEnums<Dim, NCo mponents,
Direction>::allFace, pim, NComponehts> allFace;
typedef CartesianCentering<CommonCartesianCenteringEnums<Dim, NCo mponents,
Direction>::allEdge, Dim, NComponents> allEdge;
typedef CartesianCentering<CommonCartesianCenteringEnums<Dim,NComponents,
Direction>::vectorFace, Dim, NComponents> vectorFace;
};

F.3.2 CommonCartesianCenterings Constructors
CommonCartesianCenterings is a static class, you don’t instantiate ob-
jects, but rather only refer to it by its class name. Refer to its members his way
also for example: CartesianCenterings<3U, 1U> for the member repre-
senting centering on a 3D mesh of a scalar (one-component) object.

F.3.3 CommonCartesianCenterings Member Data

typedef CartesianCentering<CommonCartesianCenteringEnums<Dim,NComponents,
Direction>::allCell, Dim, NComponents> allCell ;

Specifies CELL centering of all components along all dimensions. Functionally
equivalent to the Cell centering class.
typedef CartesianCentering<CommonCartesianCenteringEnums<Dim,NComponents,
Direcition>::allVertex, Dim, NComponents> allVertex ;

Specifies VERTEX centering of all components along all dimensions. Functionally
equivalent to the Vert centering class.
typedef CartesianCentering<CommonCartesianCenteringEnums<Dim, NComponents,
Direction>::allFace, Dim, NComponents> allFace ;

Specifies centering of all components on the faces which are orthogonal to the
specified direction (Direction=0 means x, 1 means y, 2 means z). That is, vertex-
centering along direction Direction, and cell-centering along all other direc-
tions.
typedef CartesianCentering<CommonCartesianCenteringEnums<Dim, NComponents,
Direction>::allEdge, Dim, NComponents> allEdge ;

Specifies centering of all components on the edges which are parallel to the speci-
fied direction (Direction=0 means x, 1 means y, 2 means z). That is, cell-centering
along direction Direction, and vertex-centering along all other directions.
typedef CartesianCentering<CommonCartesianCenteringEnums<Dim, NComponents,
Direction>::vectorFace, Dim, NComponents> vectorFace ;

Specifies componentwise face centering of the components of a Vector.
Usually you use this for centering a IP2L Field whose elements are Vektor’s.
For example,
Field<Vektor<double, 3>, 3,UniformCartesian<3>,CommonCartesianCenterings<3,3,3>>

100

V1.0
Draf

t

F.4 CartesianCentering Class
The static CartesianCentering class represents the abstraction of component-
wise centering of a multicomponent object (typically a Field) on a cartesian
mesh. Via the template parameters, the user specifies the centering of the various
components along the various directions.

F.4.1 CartesianCenteringDefinition(Public Interface)

template<const CenteringEnum* CE, unsigned Dim, unsigned NComponents=1U>
class CartesianCentering
{
public:
static char* CenteringName;
static void print_Centerings(ostream&) ;
};

F.4.2 CartesianCentering Constructors
CartesianCentering is a static class, you don’t instantiate objects, but rather
only refer to it by its class name, with fully-specified template parameter values. If
you have defined a static array of type CenteringEnumcalled myCEArray,
the identifier CartesianCenterings<myCEArray,3U,1U> refers to the
static class representing centering on a 3D mesh of a scalar (one-component) ob-
ject according to the centering specifiers in myCEArray. In this case, myCEArray
would have to have three elements (each having the value CELL or VERT). In gen-
eral, the number of elements in the array of CenteringEnum (the CE template
parameter value) must equal the value of the Dim parameter multiplied by the
value of the NComponent parameter. The ordering of the elements is so that the
component indices vary fastest, and the dimensions indices vary the slowest (like
a 2D C array dimensioned as [Dim][NComponent]). You must declare the
CenteringEnum array you use as the value of the CE template parameter as
static, and at global scope.

F.4.3 CartesianCentering Member Functions and Mem-
ber Data

All the member functions of CartesianCentering are of course static. Refer
to them with the syntax classname::membername, where classname is, a
name identifying aparticular CartesianCentering class specialization, as
described in this Appendix.
static char* CenteringName ;

101

V1.0
Draf

t

A string containing a identifying name for a particular template instance of
CartesianCentering. Currently, there is only a single name, so that the
value of CartesianCentering<CE,Dim,NComponent> is the same for
any values of the template parameters.
static void print_Centerings(ostream&) ;

Prints a formatted version of the CartesianCentering class. Specifically, it
prints the values of the elements of the CE template parameter (as an array with
Dim*NComponents elements).

102

